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Abstract

From Aari to Zulu: Massively Multilingual Creation of Language Tools using Interlinear
Glossed Text

Ryan Georgi

Chair of the Supervisory Committee:

Professor Fei Xia

Linguistics

This dissertation examines the suitability of Interlinear Glossed Text (IGT) as a computa-

tional, semi-structured resource for creating NLP tools for resource-poor languages, with a

focus on the tasks of word alignment, part-of-speech (POS) tagging, and dependency pars-

ing. The creation of a massively multilingual database of IGT instances called the Online

Database of INterlinear text (Odin) made possible the potential for creating tools to har-

ness this particular data format on a large scale. Xia and Lewis (2007); Lewis and Xia (2008)

demonstrated the potential of using IGT instances from Odin to answer some typological

questions such as basic word order for a large number of languages by means of utilizing

the language–gloss–translation line structure of IGT instances to bootstrap word alignment,

and consequentially syntactic projection. This dissertation seeks to perform a thorough

investigation as to the potential for creating these NLP tools for endangered or otherwise

resource-poor languages with nothing more than the IGT instances found in Odin.

After introducing the IGT data type and the particulars of the resources that will be

used (Sections 3.1 to 4.4), this thesis presents each task in detail. Word alignment will be

discussed in Chapter 5, POS tagging in Chapter 6, and dependency parsing in Chapter 7. In

Chapter 8, INterlinear Text ENrichment Toolkit (Intent), the software created to enrich

the IGT data and extract NLP tools from it will be introduced, and a brief summary of



where to find and use the software will be included. Lastly, Chapter 9 will discuss aims of

the experiments, and the overall viability of IGT for the tasks attempted.
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Chapter 1

INTRODUCTION

1.1 Motivation

With the remarkable achievements accomplished by data-driven Natural Language Process-

ing (NLP), much recent work in the field has been done on expanding available sources of

data. The approaches have varied from adapting comparable corpora (Hana et al., 2004;

Feldman et al., 2006) to tasks typically requiring parallel corpora (Yarowsky and Ngai, 2001;

Hwa et al., 2004), to using partial or noisy automatic annotation to train models (Spreyer

and Kuhn, 2009), to crowdsourcing using Amazon’s Mechanical Turk (Callison-Burch and

Dredze, 2010). Expanding the available data can be used for improved performance and

domain adaptation on existing tasks, or implementing NLP tasks in new languages entirely.

Curated resources have become available for more languages in recent years, enabling

data-driven methods for a variety of new tasks in these languages. Between the LRE Lan-

guage Map1 (Calzolari et al., 2012) and the catalog of the Linguistic Data Consortium

(LDC)2, there are resources available for approximately3 205 languages. Despite this in-

crease, this is still far short of the 7,000+ living languages on Earth (Lewis, 2009). Further-

more, as Fig. 1.1 shows, a large plurality of these 205 languages have only a single resource

available, with the top twelve languages accounting for 73% of the total available resources,

but only 29% of the world’s population.

1Language Resources and Evaluation, http://www.resourcebook.eu/

2https://www.ldc.upenn.edu/

3I use “approximately,” because in putting together a list of the language resources available in each
catalog, the language identifiers are not normalized, and may say “Multiple Languages” or misspellings,
so this number is an estimate.

http://www.resourcebook.eu/
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Figure 1.1: Graph showing how many languages have n resources available for them among
the LDC and LRE collections, out of 205 total languages.

As a result, solutions are needed for a researcher to turn computational methods toward a

language that is not among those 205 with curated resources. If the language in question has

raw, unannotated language data available in large quantities, that may make unsupervised

machine learning methods possible. If the researcher has access to enough resources to spend

the time or money funding a language expert to create a small amount of annotation, they

may attempt to constrain an unsupervised induction method with this expert knowledge. As

discussed in Bender (2011), there is often a scarcity of funding, resources, or interest in the

form of shared tasks to languages not among the 20 most studied languages. This makes it

very difficult for researchers to find the time or money to fund an extensive annotation task

aimed at creating resources for data-driven tools. While unsupervised and semi-supervised

methods can be successful, they often require large amounts of unannotated data which is

difficult to find for infrequently studied languages.

It is this problem that this thesis seeks to address, through the use of a data source in

common usage, but with few computational applications. That data source is Interlinear
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Glossed Text, or IGT, an example of which is shown in Instance 1.1. IGT instances have

been in widespread use in the field of linguistics for years, and as such are found in a wide

selection of publications covering phenomena for thousands of languages. In Xia and Lewis

(2007), the authors demonstrated that a unique benefit of this data type was the ability to

leverage the gloss to align the source language with resource-rich English. Using available

tools for English, the English could be processed and this resulting annotation “projected”

to the resource-poor language. The work of Lewis and Xia (2010) in developing Odin, the

Online Database of INterlinear text, has made IGT instances readily available for over a

thousand languages. Both Xia and Lewis (2007) and Bender et al. (2013) demonstrate the

potential for IGT to be used in answering broad typological questions, such as basic word

order.

IGT as a resource has limitations, but its availability for a wide selection of languages, and

word-level, or sometimes morpheme-level information make it an enticing resource. While

this previous work has shown the potential for IGT as a resource in typology, I seek in this

work to create an end-to-end system that can produce bootstrapped tools for any of the

languages in the Odin database.

This work outlines the research I have performed on the utility of IGT as a resource in real-

world scenarios, focusing on base-level component tasks that can be harnessed individually

or in combination to develop more complex NLP systems for resource-poor languages.

(21) Mary-ga hon-o watas-are-ta.

Mary-nom book-acc pass-pass-pst

‘Mary was passed the book.’

Instance 1.1: An example of Japanese (jpn) IGT found in Baker (1996).

http://www.ethnologue.com/language/jpn
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1.2 Research Question

While building high-performance NLP tools for resource-poor languages remains a difficult

challenge, IGT is an intriguing resource with which to create a foothold for such languages.

Ultimately, this work seeks to answer the following question:

Can the existing language knowledge contained in Interlinear Glossed Text be

harnessed to perform basic NLP tasks on resource-poor languages in a repeatable

and broadly applicable manner?

These tasks would include part-of-speech (POS) tagging, dependency parsing, and perform-

ing word alignment on IGT instances for the purposes of projection and building translation

dictionaries.

I will look at the ways these various tasks may be attempted given a variety of data

sources that may be available for a given language pair and how access to IGT may improve

or make possible the task at hand.

1.3 Outline

In the next chapter (Chapter 2), I will discuss the relevant work that has been done previously

on word alignment, part-of-speech (POS) tagging, and dependency parsing as related to the

particular domain of resource-poor languages and how they relate to or influence the work

of this thesis. Section 3.1 will provide a more detailed description of the IGT data type, and

the particular challenges in dealing with it. Section 3.2 will give a more detailed discussion

of what the IGT data format that will be used throughout this thesis looks like, and how it

will be used. Additionally, I will give an overview of the various components that make up

the overall IGT enrichment system of this thesis, and how the different components connect

into other parts of the system.
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I will next introduce the various data sources that will be used for the experiments that

I have carried out during the process of this work in Chapter 4, followed by a discussion

of dealing with POS tags, one of the main difficulties in working across a wide variety

of languages, and the particular decisions that were made for the languages and corpora

presented here. Also pertinent to the specific issues that IGT presents is the cleaning of the

Odin data, which is discussed in Section 4.4.

Next, I will detail the experiments that were performed for each of the main tasks men-

tioned above: word alignment in Chapter 5, POS tagging in Chapter 6, and dependency

parsing in Chapter 7.

After the description of the experiments performed, I will introduce the INterlinear

Text ENrichment Toolkit (Intent), the software package that I have built to perform the

IGT enrichment tasks presented here, which is being used at the time of writing to provide

enriched data for the Odin database, starting with the release of version 2.1, and will be

freely available for users desiring to perform their own IGT-related research. Chapter 8 will

describe the package’s main features and usage, as well as where it may be obtained and

how to find documentation.

Finally, I will provide a summary of the work that has been done and the work that

remains for this topic in Chapter 9.
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Chapter 2

LITERATURE REVIEW

The main motivation behind this work was to find a method by which to create NLP

tools for resource-poor languages that have little to no data available. Given this aim, I will

discuss several broad categories in the literature that have in some way contributed toward

this goal. In Section 2.1, I will look at how languages with little or no annotated data

but large amounts of unannotated data have been approached in the past. In Sections 2.2

and 2.3, I will discuss ways in which data available for one or more language can be leveraged

to be used on another language, either by virtue of being typologically similar in some way,

or by other methods. Finally, in Section 2.4, I will discuss attempts to fill in the gaps in

resource coverage for resource-poor languages.

2.1 Unsupervised and Semi-supervised Induction Methods

One of the first paths to consider in approaching the problem of resource-poor languages are

methods for which little or no annotated data is required. This class of methods relies on

analyzing unannotated data for the target language and inducing patterns from the text.

2.1.1 Fully Unsupervised Methods

POS Tag Induction The principle hypothesis in unsupervised POS tag induction is that

words in a language can be grouped into natural classes by virtue of the contexts within which

they co-occur with other words. In English, for instance, words that follow determiners are

typically either a noun or some sort of noun modifier.

One of the earliest studies to propose such a method was Brown et al. (1992), who grouped
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Cluster 1 immediate urgent ongoing absolute extraordinary exceptional ideolog-
ical unprecedented appalling overwhelming alleged automatic [ . . . ]

Cluster 2 worried concerned skeptical unhappy uneasy reticent unsure per-
plexed excited apprehensive legion unconcerned [ . . . ]

Cluster 3 cover include involve exclude confuse encompass designate preclude
transcend duplicate defy precede [ . . . ]

Cluster 4 encourage promote protect defend safeguard restore assist preserve
coordinate convince destroy integrate [ . . . ]

Cluster 5 china russia iran israel turkey ukraine india japan pakistan georgia
serbia europol [ . . . ]

Cluster 6 waste water drugs land fish material meat profit alcohol forest blood
chemicals [ . . . ]

Table 2.1: Examples of clusters discussed in Rishøj and Søgaard (2011), extracted using the
Brown clustering algorithm (Brown et al., 1992) over the English section of the Europarl
corpus.

words into n-gram based clusters based upon this principle. In the study, the authors use

agglomerative hierarchical clustering, with a subsequent maximization step to move words

between clusters if it improves the expected probability of the observed corpus. Clark (2003)

extended this concept of clustering by incorporating morphological information, a feature

useful for languages morphologically richer than English.

Table 2.1 shows six example clusters of the 1,000 constructed in Rishøj and Søgaard

(2011) using the Brown algorithm on the Europarl corpus. As the authors point out, these

clusters seem to actually be subsets of traditional part-of-speech tags, with clusters 1 & 2

being adjectives, 3 & 4 being transitive verbs, and 5 & 6 being nouns. Furthermore, the

nouns in 5 are countries or governmental actors, while the nouns in 6 are tangible objects.

This would seem to suggest that while the clusters might not have one-to-one mappings

between cluster and POS tag, the hypothesis that word clusters have a relationship to part

of speech tags appears supported.
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Dependency and Phrase Structure Induction In addition to POS tagging, work has

also been done on fully unsupervised grammar induction for both constituent structures

(Clark, 2001; Klein and Manning, 2002) and dependency structures (Klein and Manning,

2004; Smith and Eisner, 2005b; Daumé III, 2009). While inducing word classes that resem-

ble POS tags is a task with a large search space, introducing latent structure adds a new

range of complexity. These unsupervised grammar induction methods tend to use variations

on the inside-outside algorithm (Baker, 1979), a type of Expectation Maximization (EM)

algorithm (Dempster et al., 1977) for use with tree structures. The inside-outside algorithm

initializes a Probabilistic Context-Free Grammar (PCFG) that can be used to parse the cor-

pus and produce an expectation that represents the current grammar’s view of how probable

the current corpus is. The result of this step is a large space of partial counts that represent

the probability of each portion of the grammar being observed in some version of the under-

lying structure. In the maximization step, the parameters of the model—for a PCFG, the

probabilities for the rules—are recalculated using a Maximum Likelihood Estimation (MLE)

of the partial counts.

The result is a hill-climbing algorithm that attempts to find the grammar that maximizes

the likelihood of the observed data. While this is an extremely clever solution to learning

something as complex as grammar rules from unlabeled corpora, the search space this al-

gorithm needs to traverse is massive, and thus the algorithm usually gets stuck in a local

optimum. Daumé III (2009) cites Unlabeled Attachment Score (UAS) results in the 33–45%

range for unsupervised dependency parsing, compared to a supervised system at 79–82%.

While unsupervised methods are aimed at finding the best methods to search an complex

search space, another path of research is to find ways to constrain the search; this notion

of producing “semi-supervised” or “weakly” supervised approaches will be discussed in the

following section.
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2.1.2 Semi-Supervised Methods

Using Linguistic Constraints While the fully unsupervised methods in Section 2.1.1

show a degree of promise in their ability to work on any language, regardless of knowledge

about that language, finding the best global optimum in a search space filled with latent

variables is extremely difficult. The semi-supervised class of methods seeks to use some of

the same techniques, but constrain the search space.

Semi-Supervised POS Tagging Methods There has been a great deal of work on semi-

supervised POS tagging (Smith and Eisner, 2005a; Haghighi and Klein, 2006b; Toutanova

and Johnson, 2007; Mann and McCallum, 2008; Graça et al., 2011). Two of these techniques

include determining what a “prototypical” word for a POS tag is, so as to assign probability

mass to that POS tag for contexts that the prototype appears in; and incorporating partial

dictionaries and utilizing the intuition that though a word may be ambiguous, its distribution

over possible tags is usually sparse (Toutanova and Johnson, 2007). All of these approaches

share the same goal of reducing or otherwise constraining the search space for POS induction.

In Haghighi and Klein (2006b), the authors use a list of words that are prototypical of

a given POS tag as a way to constrain the forward-backward sequence labeling algorithm

(Rabiner, 1989) to only consider model parameters for which the prototypes are given their

specified POS tag. In the study, the unsupervised forward-backward system achieves 42.2%

POS tagging accuracy using the Penn Treebank tagset and sentences of length 10 or shorter

from the first 48K tokens of the Wall Street Journal (WSJ) section of the treebank (Mar-

cus et al., 1993). Using only this constraint, the authors report that a list of prototypes

automatically extracted from the WSJ corpus and designed to be unambiguous achieves a

61.9% tagging accuracy. In contrast to the fully unsupervised approach, where the forward-

backward algorithm is initialized randomly and unconstrained, the prototype constraints

serve to guide the model to a more global optimum.
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In another experiment, Haghighi and Klein expand the set of prototypes using distribu-

tional similarity features, and rerun the experiment with a much larger group of prototypes.

This expansion increases POS tag accuracy from the 61.9% using the original prototypes to

79.1% using the distributional similarity features. While this methodology seems promis-

ing, it should be noted that the choice of prototypes is extremely important, as the authors

note that “tuning [of the prototype list] could greatly reduce the error rate,” and that the

automatic extraction method produces best-case results.

An alternate take on constraining the POS tagging search space is the approach taken by

Toutanova and Johnson (2007). In this work, the authors use a dictionary that lists words

and their POS tags; however, rather than condition upon the POS tags directly, the system

models the ambiguity class, or the set of possible tags for a word. For instance, activity-

type words like ‘run,’ ‘walk,’ or ‘feed’ that may have both a verbal meaning and a nominal

meaning might form the ambiguity class of {Verb, Noun}. This allows for the model to

allocate probability mass for a particular ambiguous word without affecting the best overall

sequence for the sentence.

With a dictionary created from words and their ambiguity classes that appear 3 or

more times in the corpus, this approach achieves 89.7% accuracy. Although the authors

acknowledge that building a dictionary from an annotated source is “arguably unrealistic”

(Toutanova et al., 2002, p. 6), modeling these ambiguity classes would appear to allow for

somewhat more flexibility in constraining the tagging problem than the prototype solution.

Semi-Supervised Grammar Induction Methods In addition to work done in POS tag-

ging, work on semi-supervised grammar induction is fairly extensive as well (Haghighi and

Klein, 2006a; Koo et al., 2008; Naseem et al., 2010; Mirroshandel et al., 2012). Following

up on the prototype method for constraining an EM algorithm’s search space, Haghighi and

Klein (2006a) describe a method for doing a similar prototype-based system for constituent

parsing. In this work, prototypes are given as Context Free Grammar (CFG) rules such as
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NP → DT NN or VP → VBD DT NN. The prototypes are then used during the inside-outside

algorithm such that when the production on the right is encountered, partial counts are dis-

carded for rules that do not match the prototype. Using this approach, the authors report

a labeled F1-score of 0.57 on the WSJ-10 corpus.1 The authors also perform an experiment

intersecting the deep-structure PCFG induction algorithm of the inside-outside algorithm

with the shallow, bracketing-inducing Constituent-Context Model (CCM) of Klein and Man-

ning (2002). Using the constraints for the inside-outside algorithm given above, Haghighi

and Klein use the matrix of possible bracketings and their likelihood scores and multiply

those scores with the partial count matrix of the inside-outside algorithm, to reinforce the

likelihood that the structure being induced in the PCFG is also a likely constituent as deter-

mined by the CCM algorithm. Combining these two models and using the constraints and

distributional features of the prototypes to expand the prototype list ultimately produces a

labeled F1-score of 0.65.

Haghighi and Klein (2006a) inspired the work from my master’s thesis (Georgi, 2009),

where I extracted prototype CFG rules from IGT instances to constrain an inside-outside

algorithm in a similar manner. The results of this research on the German-language NE-

GRA corpus (Brants et al., 2003) showed only 0.27 labeled F1-score when the terminals and

nonterminals were mapped to a common reduced tagset. Compared to the uninformed EM

algorithm, which produces labels that are essentially random, this 0.27 is still better than the

uninformed system’s F1-score of 0.007. When the labels were remapped many-to-one to the

label that greedily optimized the score, this brought the scores to 0.45 and 0.41 respectively.

Despite this improvement, requiring such remapping is precisely what semi-supervised meth-

ods seek to avoid. Despite the promise of this prototype-driven method, it seems that the

prototypes must be chosen to be extremely unambiguous, and the noise that projection with

IGT introduces is likely too great for this approach to work well.

1The Wall Street Journal section of the Penn Treebank, consisting only of sentences of length ten words
or fewer.
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Semi-Supervised Word Alignment Unsupervised word alignment using parallel cor-

pora has been common practice in machine translation for decades, whether using the IBM

Models (Brown et al., 1993), or an HMM model for word alignment (Vogel et al., 1996).

When looking to perform word alignment for resource-poor languages, which do not have

substantial amounts of parallel text, some modifications to the typical approach are needed.

One such approach to adapt such statistical approaches to resource-poor languages is

proposed in Fraser and Marcu (2006), where word alignment present in a supervised set of

alignments is used as “gold” data. In the approach taken by Fraser and Marcu (2006, 2007),

the IBM Model 4 parameters of translation probability, fertility, and distortion are cast as

sub-models hm with weights λm of a larger log-linear model. In a modified EM algorithm, the

sub-model parameters θm are estimated and used to produce a vector of sub-model weights λ.

To augment the M step, a discriminative re-ranker is used to choose the sub-model weights

with the minimum error according to the training data, and the process is repeated until

convergence.

While I will discuss how IGT may be used to obtain high-precision alignments in Sec-

tion 3.1.3 and Section 5.2, the difficulty in using this approach is that it requires that a small

gold-standard corpus be available for each language desired, something that would require

specific language knowledge to produce. Although such resources may require substantial

human effort to produce, the experiments on word alignment I present here could be used

as a preliminary step to generate a small, relatively high-quality corpus that could then be

corrected by annotators, thus greatly reducing the effort required to produce such a resource.

2.2 Adapting Resources by Leveraging Typological Similarities

Utilizing Morphosyntactic Similarities One approach to dealing with a resource-poor

language is to find a typologically or genetically related language with comparatively more

resources, and leverage the similarity between the languages to use the resource-rich language
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of the pair as a guide for the related, but resource-poor language. This is the type of

approach taken by Hana et al. (2004) and Feldman et al. (2006) for doing morphological

analysis of resource-poor Russian using resource-rich Czech and Polish. In these studies, the

morphosyntactic features of the lexical items and their word order are the basis upon which

Russian, Czech, and Polish all share some degree of similarity. Despite the large amount of

monolingual text in each of these languages, the authors note that parallel text is difficult

to come by for many Slavic languages, and so the work focused on exploiting the typological

similarities rather than projection-based approaches such as those in Section 2.3.

These studies adapt the morphological information between these languages by using the

TnT tagger (Brants, 2000) and using surrogate data for estimating the transition and emis-

sion probabilities. The morpheme-level POS tags from the resource-rich language are used

to approximate the transition probabilities of the related target language, while a statisti-

cal morphological analyzer on the resource-poor target language is used to approximate the

emission probabilities by bootstrapping the emissions from cognates in the other language.

While the transition properties can be transferred between the related languages, the mor-

phological analyzer is needed in order to adapt the tagger to the different lexical items in the

target. Between Czech and Russian, Hana et al. (2004) show that their tagger achieves an

accuracy of 88%, compared to the commercial Xerox tagger2 at 82%, showing a great deal

of promise for this approach. Another important finding of Feldman et al. (2006) is that

combining Polish and Czech training data for the Russian tagger performs better than either

language alone. The authors hypothesize that the two languages may have complementary

similarities, such that combining the training data ultimately produces a more Russian-like

pseudo-language.

Another instance of adapting resources from related languages is described in Snyder

and Barzilay (2008), where Hebrew, Arabic, Aramaic, and English are analyzed in par-

2http://www.xrce.xerox.com/competencies/content-analysis/demos/russian

http://www.xrce.xerox.com/competencies/content-analysis/demos/russian
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Source Language

Danish German Greek English Spanish Italian Dutch Portuguese Swedish

T
a
rg

et
L

a
n

gu
a
ge

Danish 79.2 45.2 44.0 45.9 45.0 48.6 46.1 48.1 47.8
German 34.3 83.9 53.2 47.2 45.8 53.4 55.8 55.5 46.2
Greek 33.3 52.5 77.5 63.9 41.6 59.3 57.3 58.6 47.5
English 34.4 37.9 45.7 82.5 28.5 38.6 43.7 42.3 43.7
Spanish 38.1 49.4 57.3 53.3 79.7 68.4 51.2 66.7 41.4
Italian 44.8 57.7 66.8 57.7 64.7 79.3 57.6 69.1 50.9
Dutch 38.7 43.7 62.1 60.8 40.9 50.4 73.6 58.5 44.2
Portuguese 42.5 52.0 66.6 69.2 68.5 74.7 67.1 84.6 52.1
Swedish 44.5 57.0 57.8 58.3 46.3 53.4 54.5 66.8 84.8

Table 2.2: Unlabeled Attachment Score (UAS) results of transfer parsing from McDonald
et al. (2011). The bold numbers are results for the parser being trained and parsed on itself.
The underlined numbers are the best results for a source language other than the target
itself.

allel to induce morphological segmentation. Using a corpus of short parallel phrases, the

authors model potential segmentations and alignments between morphemes among the par-

allel phrases, assuming morphemes may be aligned to zero or one other morpheme. Arabic,

Hebrew, and Aramaic are Semitic languages, known for highly productive morphology (Brav-

mann, 1977). While English is not a related language, it is an isolating one (Sapir, 1921).

Snyder and Barzilay (2008) notes that, although English’s lack of morphological ambiguity

helps in this parallel induction, when character-to-phonetic correspondences are added from

a related language, the related languages perform significantly better. Furthermore, in all

but the Aramaic→Hebrew pair, the inclusion of the other languages in the analysis outper-

forms the state-of-the-art monolingual morpheme induction system Morfessor Creutz and

Lagus (2007).

Utilizing Delexicalized Syntactic Information Moving on from the morphological

analysis case, another interesting approach to resource adaptation is the “transfer parsing”

approaches of Zeman (2008) and McDonald et al. (2011, 2013). In these approaches, the
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authors use language pairs for which words have been replaced with part-of-speech tags either

from a gold standard or by a tagger to hide the lexical features specific to a given source or

target language from the parser, thus “delexicalizing” it. In order to ensure compatibility

between tags, these papers use some form of mapped POS tags, either an “Interlingua-like”

tagset (Zeman, 2008) or the Universal POS tagset (Petrov et al., 2012). Täckström et al.

(2013) take the “delexicalization” a step farther and replace the mapped POS tags entirely

using induced word clusters.

Whatever the method for grouping words into classes, the now-delexicalized parser is

agnostic as to which language it is actually looking at, since the only tokens presented to it

are universal POS tags that can be mapped between languages. This allows for the parser

to be trained on dependency structures in one language, and parse POS-tag sequences into

dependency structures in another language.

Given that these transfer-parser approaches are agnostic with regards to specific lexical

items of the language, the languages that the parsers “transfer” between need not be related.

There is, however, an expectation that syntactic information expressed in the form of basic

word order is still encoded in the stream of POS tags. While unrelated languages may still

see good results in such transfer parsing methods, the transfer between the source and target

language may be unpredictable when the languages are syntactically divergent.

Putting this intuition to the test, the cross-linguistic results mapping source and target

languages from McDonald et al. (2011) are shown in Table 2.2, where it can be seen that

the Romance languages do tend to strongly prefer other Romance languages. Interestingly,

however, Portuguese performs better as a source language parsing Swedish than either Ger-

man, Dutch, or English, other Germanic languages. Similarly, Greek performs better as a

source language for Dutch than the other Germanic languages do as sources.

McDonald et al. (2011) make two particular adjustments to the direct transfer method of

Zeman (2008); namely, adding an alignment constraint similar to that use for projection in
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Hwa et al. (2005) to guide parallel sentences, but also a system the authors call “Multi-Source

Transfer” where training data from all available languages is concatenated and then used as

training data. Despite the näıve nature of this approach, the authors find little detriment to

some languages and modest improvements to others. This finding makes the case for using

potentially unrelated languages to transfer linguistic information from, which I will discuss

in the following section.

2.3 Adapting Resources by Other Methods

Bilingual Parsing One approach to leveraging information from a language pair, rather

than a single language, can be to use methods that ingest parallel data instead of monolingual

data. Recent work on this concept includes Inverse Transduction Grammars (ITGs), as

introduced in Wu (1997), as well as Multitext Grammars (Melamed, 2003). Both of these

approaches are extensions of a far older concept of parallel parsing algorithms often called

synchronous grammars or syntax directed translation schemata (Lewis and Stearns, 1968;

Aho and Ullman, 1969).

While such approaches are largely focused on machine translation and many studies have

been geared towards optimizing machine translation results using such parallel grammars

(Och and Ney, 2003a; Galley et al., 2006; Chiang, 2007), Wu states that a trained ITG that

is provided with fully parsed trees for one language can then be adapted to transfer “gram-

matical expertise in one language toward bootstrapping grammar acquisition in another”

(399). That is, if a transduction grammar is trained for the language pair and a high-quality

parse is available for one language, it is easy to guide the parse of the second language in

the pair by using the transduction grammar model to constrain the parse.

While synchronous grammar approaches such as these may indeed be helpful in leveraging

language resources in the manner described above, these grammars have the requirement of

needing at least some labeled training data for both languages in order to build the initial



17

The teacher gave a book to the boy yesterday

Rhoddod yr athro lyfr i'r bachgen ddoeWelsh:

English:

Figure 2.1: A parallel Welsh–English sentence, with word alignments.

model.

Projection-Based Transfer A particularly active area of research in transferring annota-

tion between languages is what I will collectively call “projection” methods, which function

by obtaining word alignment between two or more languages and “projecting” information

from one language from word to word along these alignments. The concept as I will discuss

here was introduced in Yarowsky and Ngai (2001), although syntactic transfer had been

explored previously, such as in Twisted Pair Grammar (Jones and Havrilla, 1998).

The basic notion behind projection with parallel corpora is that given a parallel corpus

consisting of a resource-rich language and a resource-poor language, the resource-rich lan-

guage either has annotations available, or can have them generated with high-quality NLP

tools. This annotation can then be mapped between languages by means of word alignment.

This approach relies on the fundamental assumption that basic syntactic concepts, such as

POS tags, can be mapped between languages. This assumption is something that Hwa et al.

(2002) describe as the Direct Correspondence Assumption (DCA), and as will be discussed

later, this assumption does not always hold up. Proceeding with this assumption, however,

one might take a parallel sentence such as that in Fig. 2.1, and start by finding the word

alignment. Once the word alignment has been obtained, annotation is generated on the

resource-rich language, as shown in Fig. 2.2. Having obtained the POS tags for the English,

it is now a simple matter of following the word alignments and “copying” the POS tags from

the English to the aligned Welsh sentence, as shown in Fig. 2.3. Yarowsky and Ngai (2001)

use projection to project POS tags in this way as well as NP bracketers, while Hwa et al.
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The teacher gave a book to the boy yesterday

Rhoddod yr athro lyfr i'r bachgen ddoe

(1) Tag English: DET NOUN VERB DET NOUN ADP DET NOUN ADV

Figure 2.2: Sentence from Fig. 2.1, with English Sentence POS Tagged.

The teacher gave a book to the boy yesterday

Rhoddod yr athro lyfr i'r bachgen ddoe

(1) Tag English: DET NOUN VERB DET NOUN ADP DET NOUN ADV

VERB DET NOUN NOUN ADP+DET NOUN ADV(2) Project to Welsh:

Figure 2.3: Sentence from Fig. 2.1, showing how POS tags would project using provided
alignment.

(2005) uses projection to bootstrap parsers.

Already, Fig. 2.3 shows some of the potential issues that the DCA can raise, as the

multiple alignment of the English words to and the with the single Welsh word i’r means that

there is a potential conflict between how English and Welsh represent this dative construction.

While English uses the preposition to to mark the indirect object and the determiner the

to mark the definiteness, it appears that Welsh is doing both in the single word i’r. This

results in a conflict in assigning the POS tag that I will address methods of handling later,

in Chapter 6.

While part-of-speech tags are one shallow form of annotation that may be projected,

dependency structures are another, deeper form that will be discussed in this thesis.

2.4 Creating Resources for Resource-Poor Languages

Finally, and tautologically, perhaps the most straightforward path to tackling resource-poor

languages is to create or discover resources for them. In this area of research, there are
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a few interesting projects that have a particular focus in broad coverage of resource-poor

languages.

Indigenous Tweets Indigenous Tweets3 (Scannell, 2014) is a directory of Twitter users

that tend to tweet in various minority languages of the world. Due to the nature of social

media content in general, and microblog content in particular, this data tends to be noisy

and difficult to work with (Derczynski et al., 2013). Furthermore, the tweets are not filtered

by language, so this resource is not a homogeneous data source. That said, as discussed in

Nilsson (2015), the very multilinguality and code-switching that make it a poor corpus for

monolingual NLP methods makes it an exceptional source for sociological and sociolinguistic

studies of minority language speakers.

The Crúbadán Project The Crúbadán Project4 (Scannell, 2007) is another project from

the same researcher behind Indigenous Tweets. At the time of writing, the database con-

tained entries for 2,124 languages, and provides ISO-639-3 code (SIL International, 2006),

countries in which the language is spoken, and script type for each of the languages. Included

for each language is a list of URLs for pages that contain the given language, a word list,

character trigrams, and word bigrams.

Such resources allow for the building of tools for resource-poor languages, such as gram-

mar checkers (Scannell, 2016), language identifiers (Lui et al., 2014), and others. This

resource appears to be very well-curated, and, as far as I can tell, underutilized.

The Online Database of INterlinear text (Odin) The principal works of relevance in

this thesis are those of Lewis (2006) and Lewis and Xia (2010), which describe the develop-

ment of the Online Database of INterlinear text (Odin). Odin was created in a multi-step

3http://indigenoustweets.com/

4http://crubadan.org/

http://indigenoustweets.com/
http://crubadan.org/
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process. First, a meta-crawling approach was used, creating queries based upon phenom-

ena often discussed in IGT instances (such as ERG or ABS ) and directing these queries to

existing search engines. After scraping the results of each search, a classifier for detecting

IGT instances within a document was then trained, and the IGT instances isolated. Once

isolated, language identifiers were created for the instances, at first by leveraging the fact

that the language name for the instance was typically given by the author of the document

in which it was embedded. With a sufficient number of examples for each language thus

identified, language models could then be built using the previously identified instances for

the identification of future instances.

The resulting Odin-2.15 dataset used for the experiments in this thesis consists of 151,633

instances covering 1,487 languages. More statistics on the breakdown of the Odin data can

be found in Section 4.1.1.

With Odin created, Xia and Lewis (2007) describes some preliminary ways in which this

resource can be leveraged to create NLP tools for the languages contained in the database

via projection similar to Hwa et al. (2005), but with the added benefit of the high-quality

alignment provided by the gloss line contained in IGT. The methods I used in this work

for alignment and projection largely follow this study, and as such are explained further in

Chapter 5 and Section 6.2.

Moving the scope of research outward from generating resources for particular languages,

Lewis and Xia (2008) further investigates the possibility of using Odin as a resource to

answer broad typological questions. Lewis and Xia (2008) sought to predict basic word

order parameters (Greenberg, 1963) using the World Atlas of Language Structures (WALS)

(Dryer and Haspelmath, 2013) as a gold standard, and were able to achieve 99% accuracy

with 40 or more IGT instances, and 79% accuracy for between 10–39 instances. This shows

that IGT holds promise as a computational resource not only for language-specific queries,

5http://depts.washington.edu/uwcl/odin/

http://depts.washington.edu/uwcl/odin/
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but also for answering broader typological questions.

2.5 Summary

I have discussed a great number of methods which may be used to approach languages for

which annotated data is scarce, but many of these approaches have limitations. When it

comes to unsupervised approaches, the amount of data required to achieve the published

results is typically on the order of millions of sentences. For instance, while the projection-

based approach of Das and Petrov (2011) sounds extremely promising, in that POS tagging

accuracy figures between 79.5% and 87.9% are reported over 8 languages, with only linguistic

knowledge of English required. These languages are all European, however, and the data

requirements are in the millions of sentences, something that will not be achievable for many

resource-poor languages.

Bilingual parsing methods using Inverse Transduction Grammars as described in (Wu,

1997, p. 399) also sound promising, but require gold-standard parse trees for training before

parsing on unseen sentences can be performed, and also require large parallel corpora.

The semi-supervised approaches too, hold promise, but in Haghighi and Klein (2006b) and

Toutanova and Johnson (2007), the authors noted that the selection of the supervision can

greatly affect the results. In these two studies, the authors used corpus-driven approaches

to select the prototypes and tagging dictionaries, respectively. While this produced good

results on these corpora, how will such approaches function when the available supervision

is far sparser or noisier, as it is with IGT?

In this thesis, I will make the case for working with data that does exist for resource-poor

languages, namely Interlinear Glossed Text. The Odin database provides broad, semi-

structured data for over a thousand languages, and if this data can be properly harnessed, it

may open the door to hundreds of previously intractable languages. In the following chapters,

I will describe the ways in which the unique data source that is IGT can be used to form a
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foundation upon which massively multilingual tools might be built.
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Chapter 3

METHODOLOGY OVERVIEW

Having discussed previous attempts to address the creation of language tools for resource-

poor languages, I will now outline the methods that I will be pursuing in this thesis. Following

on the promise of Interlinear Glossed Text (IGT) demonstrated by Xia and Lewis (2007)

and Lewis and Xia (2009) as a computational resource with broad coverage, this work con-

centrates on expanding upon different methods of exploiting IGT to bootstrap NLP tools.

Though such flexibility exists, and the format is not formally defined, the Leipzig Glossing

Rules (Bickel et al., 2008) provide a set of guidelines with which

I will begin by giving a more detailed introduction to IGT as a data type (Section 3.1),

before giving an overview of the IGT enrichment system (Section 3.2) and its individual

components: the word alignment module (Section 3.2.1), the POS tagging module (Sec-

tion 3.2.2) and the dependency parsing module (Section 3.2.3).

3.1 Interlinear Glossed Text

Interlinear Glossed Text, or IGT, is a simple way of presenting linguistic examples. IGTs

are used to present information about a language, such as morphology, syntax, or lexical

distinctions to readers who may not have specific knowledge about the language at hand.

Because the examples are used to illustrate particular purposes, the author will often present

a varying amount of information, depending on what he or she feels is needed to illustrate

the particular linguistic phenomenon or phenomena at hand. Though there is no formal

specification for the IGT format, the Leipzig Glossing Rules (Bickel et al., 2008) is a set of

guidelines that aim to standardize the format as much as possible.
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The typical instance of IGT includes a language line, a gloss line, and a translation

line, and represents a single sentence, as in Instance 3.1, which shows a simple IGT instance

for the German sentence Peter erzählt den Kindern eine Geschichte (“Peter tells the story

to the children”).

Although examples like 3.1 are the norm, IGT instances also occur in other forms, such

as that in Instance 3.2, where a single IGT instance is used to represent two or more similar

sentences in the same example. Other variation includes instances with additional lines of

metadata, such as alternative translations, citations, or description of linguistic phenomena.

While these other forms are not uncommon, I will focus on the canonical form shown in

Instance 3.1. I will discuss these alternate forms in more depth in Section 4.4.

3.1.1 Using IGT for Alignment

One of the most immediately noticeable aspects of the IGT data format is the gloss line, and

in particular, the English translations provided by the gloss. Given that there is often an

unambiguous repetition of the same English word on both gloss line and translation line, this

can be used to assume alignment between the gloss and translation line tokens. Furthermore,

since the gloss tokens and the language-line tokens are aligned in a one-to-one, monotonic

manner, the gloss line can typically be used as a pivot to align the translation line with the

language line.

Instance 3.3 illustrates this alignment for the sentence from Instance 3.1. Just as we can

Peter erzählt den Kindern eine Geschichte Language
Peter tells the:DAT children:DAT an:ACC story:ACC Gloss

Translation“Peter tells a story to the children.”

Instance 3.1: IGT with German (deu) on the language line and English as the translation.
(Nakamura, 1997).

http://www.ethnologue.com/language/deu
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János-nak/Neki győz-ni/győz-ni-e kell.

John-dat/he.dat win-INF/win-INF-1PL must

‘It is necessary for John/him to win.’

Instance 3.2: A Hungarian (hun) IGT instance from Laczkó (2002) that combines two
examples into one.

align the translation and gloss tokens children[7] ←→ children:DAT[4], we can assume

that the fourth gloss token aligns with the fourth language token and thus transitively align

children[7] ←→ Kindern[4].

3.1.2 Using IGT for Projection

In the alignment example in Instance 3.3, it happens that the alignment is felicitous, and can

be used to make assumptions about the German based on what is known about the English,

namely that children is a noun, and in this case is the indirect object of the sentence. Using

word-to-word alignment to make this kind of correspondence is the basis of projection

methods, such as those used by Yarowsky and Ngai (2001); Hwa et al. (2004); McDonald

et al. (2005); Xia and Lewis (2007) and Das and Petrov (2011). Though I will discuss how

I use projection in more detail in Section 6.2 and Section 7.2, Instance 3.4 shows a simple

Peter erzählt den Kindern eine Geschichte Language
Peter tells the:DAT children:DAT an:ACC story:ACC Gloss

Translation“Peter tells a story to the children”

1 2 3 4 5 6

1 2 3 4 5 6 7

Instance 3.3: IGT Instance from Instance 3.1, but this time showing the alignment informa-
tion provided by the gloss.

http://www.ethnologue.com/language/hun
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Peter erzählt den Kindern eine Geschichte Language
Peter tells the:DAT children:DAT an:ACC story:ACC Gloss

Translation“Peter tells a story to the children”

1 2 3 4 5 6

NOUN VERB DET NOUN ADP DET NOUN
1 2 3 4 5 6 7

NOUN VERB DET NOUN DET NOUN

Instance 3.4: IGT instance demonstrating how POS tags can be projected from the trans-
lation line to the language line by way of the the gloss line.

illustration of using the alignments to project part-of-speech tags from the translation line

to the language line.

3.1.3 The Gloss Line As a “Pseudo-Language”

Since English translations are typically found both on the gloss line and translation line of

IGT instances, these words can be a useful aid in aligning the translation line with the

words in the language line with which the gloss words match. Besides the English words,

however, the gloss line also contains additional information in the form of grams1. One such

example would be the gram 3SG, indicating that the word contains some form of inflection

for third person and singular number. The following Instances 3.5 to 3.8 contain instances of

Oriya, a language spoken in southern and eastern India; Turkish; Yukaghir, an endangered

language of Eastern Russia with a population of 70–80 speakers (Hammarström et al., 2016);

and |Gwi, a threatened language of Botswana from the Khoisan family consisting of roughly

2–4,000 speakers (Lewis, 2009).

Despite such wide variation, all three instances contain English words, and familiar gram-

1My usage follows that of Bybee and Dahl (1989), where a “gram” refers to a token of gloss-line annotation
used to mark a grammatical feature of the token, such as inflection or case.
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0 da zo-ro gE-rE wuo-ro la haane.

3sg PAST run-IMPERF go-IMPERF collect-IMPERF FACT berries

He/she was always running there collecting berries.

Instance 3.5: Instance of Oriya (ori) from Beermann and Hellan (2002).

Para-yi kim čal-di-ø?
money-ACC who-NOM steal-PAST-3SG

‘Who stole the money?’

Instance 3.6: Instance of Turkish (tur) from Zwart (2002).

ta:t jo:nro-lu-ge tudel pon’o:-l’el.
so forget-1PL-CONV he remain-3SG

‘Since we forgot him, he remained alone.’

Instance 3.7: Instance of Yukaghir (ykg) from Nedjalkov (1998).

Cire !ko~o Da !ko~o

1.SG.NOM go 1.SG.IMP go

‘I go.’ ‘Let me go.’

Instance 3.8: Instances of |Gwi (gwj) from Nordlinger and Sadler (2000) showing how an
imperative mood for a clause is encoded on a pronoun.

http://www.ethnologue.com/language/ori
http://www.ethnologue.com/language/tur
http://www.ethnologue.com/language/ykg
http://www.ethnologue.com/language/gwj
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matical indicators. As a result, the gloss line makes an appealing target for building a general

system that can analyze any IGT instance, based on previously seen gloss lines. This is pos-

sible, with a few caveats. For one, as the IGT instances in Odin cover over a thousand

languages, and the gloss line tokens mirror the word order of the language they annotate,

word order will vary from language to language. As such, when building such a general sys-

tem, context between tokens should not be relied upon. Second, though grams may indicate

concepts such as person or number as verbal inflection in one language, in other languages

other word classes may exhibit these grammatical features. For instance, in Instance 3.8,

the authors illustrate what appears to be a case of the imperative mood being encoded on a

pronoun.

In Instances 3.5 to 3.7, the variation of the grams 3SG, NOM, and IMPERF, could be ex-

tremely useful in answering interesting typological questions such as: how different types of

agreement are expressed, what case system (Bender et al., 2013, 2014) or gender systems

might be used on nouns, or how tense and mood are expressed on verbs. Because of this vari-

ation, however, training a system to analyze glosses based on knowledge from one language

may not always map correctly to other languages.

While my work does not focus on these more complex associations between the grams

and the words they modify, it does take advantage of these grammatical markers as clues to

the part-of-speech tag of the language-line word the gloss token is intended to represent. For

instance, the IMPERF gram in Instance 3.5 or the PAST grams in Instance 3.5 or Instance 3.6

are likely to be strong indicators of a VERB POS tag. However, despite this strong positive

correlation, grams like 3SG can indicate the inflection of either a VERB (as in Instances 3.6

and 3.7), a NOUN (Instance 3.5) or a PRON (Instance 3.8).

Through all of this linguistic analysis, in a format meant to be relatively standardized, the

IGT gloss line can be thought of a “pseudo-language” in that it uses a common vocabulary,

mixing English words and grammatical markers, though with a word order that changes
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according to the language it annotates. This unique aspect of IGT is something that I will

explore further in Sections 5.3.2 and 6.3.

3.2 System Overview

Having described what IGT is, and some of its unique features, I will now provide an overview

of the system that I have created for the purpose of using IGT’s unique features to auto-

matically enrich these examples. I call this system INterlinear Text ENrichment Toolkit,

or Intent. The flowchart in Fig. 3.1 gives a very high-level overview of the modules in the

system.

The overview in Fig. 3.1 first draws a distinction between “Raw” IGT and “Enriched”

IGT. “Raw” IGT in this setting is the plain text IGT instances, whether from Odin or

another source. The “enriched” IGT are IGT instances with added POS tags, translation-

INTENT Enrichment System

Raw IGT

Part-of-Speech 
Tagging

(§6)

Word Alignment
(§5)

Dependency 
Parsing

(§7)

Gloss POS Tags
For Aligning Gloss/Trans

Lang↔Trans Aln
For Projecting Tags

Lang↔Trans Aln
For Projecting Trees

Lang POS Tags
For Training Parser, Learning Divergence

Enriched IGT

Figure 3.1: High-level overview of the end-to-end Intent system which will be discussed in
Chapter 8. Intent enriches raw IGT with POS tags, word alignments, and Dependency
Structures. Required inputs are shown with solid lines, while optional inputs are shown with
dotted lines.



30

to-gloss alignments, or dependency structures.

Figure 3.1 illustrates the three main modules of the system: the POS tagging module

(Chapter 6), the word alignment module (Chapter 5) and the dependency parsing module

(Chapter 7). Each module may have interactions with other modules depending upon the

settings of the module. For instance, the solid arrow between word alignment and dependency

parsing indicates that the IGT-based word alignment module is required for the dependency

parsing module, as the dependency parsing experiments require some form of word alignment

to project the structures between the translation line and the target language. In the next

several sections, I will give a brief overview of the system and the settings for each of the

component modules.

3.2.1 Word Alignment

Figure 3.2 gives an overview of the different methods for aligning the IGT data as will be

presented in Chapter 5. I describe a method for aligning the language and gloss lines of

Word Alignment Module (§5)

Raw IGT

Statistical
Aligner
(§5.2)

Heuristic 
Aligner
(§5.1)

Aligned IGT

POS
Tags

Combined 
Method
(§5.2.4)

Figure 3.2: Overview of the word alignment module and its different settings.
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POS Tagging Module (§6)

Raw IGT

POS Tag 
Projection

(§6.2)

POS-Tagged 
IGT

Word
Alignment

English
Tagger

Train Gloss-
Line Classifier

(§6.3)

Manual
Gloss-Line Tagging

Gloss-Line Tagged IGT
(Manually Created)

Gloss-Line Tagged IGT 
(via Projection)

Combine
Approaches

(§6.3.5)

Train Monolingual 
POS Tagger

(§6.5)

Figure 3.3: Overview of the POS tagging module and its different settings.

IGT instances using various different matching heuristics (Section 5.2), and compare the

performance of this method against statistical approaches (Section 5.3). In addition to these

approaches, I discuss how elements that have been heuristically matched can be combined

with a statistical approach on the IGT instances to create a combined alignment approach

(Section 5.4). The end result of this module is a set of IGT instances that have alignment

either between the language and gloss lines, with a 1-to-1 alignment assumed between gloss

and language lines, or instances with language and translation lines aligned directly.

3.2.2 POS Tagging

The POS tagging module (Fig. 3.3) also consists of three potential approaches for training

POS taggers from IGT sources. The first is POS tag projection, which is described in

Section 6.2. This requires Raw IGT, an English POS tagger, and IGT word alignment
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(from the word alignment module). The second method is a classification-based approach

(Section 6.3), which requires a training corpus of manually POS-tagged gloss line data. The

third approach combines both projection and classification by using the projection approach

to project POS tags to the gloss line, and using those projected labels to train the classifier

(Section 6.4). Whether projected or labeled directly by means of a classifier, the POS tags for

these latter two approaches may be only applied to a subset of IGT instances and languages,

as this approach leverages the “pseudo-language” qualities of the gloss line to apply gloss line

POS tags to IGT instances regardless of the target language. These gloss line POS tags can

then use the one-to-one alignment with the language line to label the language line tokens

with the appropriate POS tags.

Once the language line has POS tags, those target language sentences can be used as a

source of supervision to train a POS tagger that can be used directly on the target language.

Those experiments are described in more depth in Section 6.6.

3.2.3 Dependency Parsing

Finally, the flowchart in Fig. 3.4 illustrates an overview of the experimental settings for

dealing with the topic of dependency parsing. Like POS tagging, the basic setting for

obtaining DS parses for IGT data involves parsing the translation line, aligning the instance,

and projecting the structure to the language line, which is covered in Section 7.2.

Unlike the POS tagging module, the dependency parsing module includes a series of

processes aimed at comparing the DS trees used in projection with another set of trees

to learn how the two sets of annotation diverge, and improve the results. There are two

approaches for this divergence-learning task: the first system uses manually corrected trees

alongside the projected DS trees and, in combination with a statistical DS parser, uses the

projected trees as features in the parser training process. This system may then be run on

new IGT data of the same language, and the projection is weighted against other parser
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DS Parsing Module (§7)

Raw IGT

DS Projection
(§7.2)

DS Parsed IGT

Word
Alignment

English
Parser

Statistical DS 
Parser

Train Monolingual 
DS Parser

(§7.5)

Manually Corrected 
DSs

Generate 
Rewrite Rules

Train Projection-
Based IGT Parser

Test IGT

Project and 
Apply Rewrite 
Rules (§7.4)

Project and Use 
IGT-Trained 
Parser (§7.3)

POS
Tags

English DS Trees

Figure 3.4: Overview of the dependency parsing module and its different settings.
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features to produce better parses than projection alone (Section 7.3). The second system

compares the English DS with the manually corrected IGT DSs to find divergence patterns,

and then applies these rewrite rules to subsequent projections (Section 7.4).

While any of the dependency parsing methods above ultimately produce IGT instances

with target language DSs, only the projection-based approach does not require additional

manual intervention, and so it is the most broadly applicable. For that setting, Section 7.5

tests training monolingual DS parsers using different combinations of alignment methods

and POS tag sources.

3.3 Summary

In this section, I have laid out a number of methods to use the unique data source that is raw

IGT instances, and utilize the particular features of IGT to add word alignment, POS tags,

and dependency structures. In the next chapter, I will discuss the particular data sources in

more detail, as well as some of the peculiar difficulties in dealing with different data sources,

such as mapping between different POS tag sets (Section 4.3) and dealing with the very

important issue of noise in many of the IGT instances (Section 4.4).
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Chapter 4

THE DATA

As the goal of my research has been to develop a system capable of working on any

language that is represented within Odin, a complete evaluation of the system would be run

against many languages, belonging to many different language families. In addition, I have

three tasks that I will evaluate: POS tagging, word alignment, and dependency parsing.

While corpora with manually-created gold standards are often available for one or more of

these tasks, finding all three in the same place is difficult. Therefore, I have used a number

of different corpora to try and answer all of these questions.

In the following sections I will give an overview of the specific corpora used for this

research (Section 4.1) and a number of details about how the data was used, including

tokenization and transliteration (Section 4.2), dealing with multiple tagsets (Section 4.3),

Resource Type Odin XL-IGT RG-IGT UD-2.0 HUTP CTN

IGT X X X X X

POS Tags
(Tagset)

X
(Universal)

X
(Universal)

X
(Hindi)

X
(CTN)

Dependency Structures X X X

Word Alignment X X

# Of Sentences 151,633 796 82 85,625 147 8,695

# Of Languages 1,487 7 5 8 1 1

Table 4.1: High-level overview of the corpora used in this thesis, and the type of annotation
that they contain.
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and the issues of data cleanliness involved with using IGT from Odin (Section 4.4).

4.1 Corpora Overview

Table 4.1 shows a very high-level overview of the six corpora used in this thesis, and the gold-

standard annotations that each contain: IGT instances, POS tags, Dependency Structures,

or word alignment. Table 4.2 shows a different view of the corpora, breaking down the

annotation by language, covering the sixteen different languages that will be tested on in

this thesis. The key in Table 4.2 may be used as reference for the resources provided by each

corpus.

Language
Family

Language ISO ODIN XL-IGT RG-IGT UD-2.0 HUTP CTN

Afroasiatic Hausa hau

Austronesian
Indonesian ind

Malagasy mlg

Indo-European

Bulgarian bul

French fra

Gaelic gla

German deu

Hindi hin

Italian ita

Spanish spa

Swedish swe

Welsh cym

Koreanic Korean kor

Sino-Tibetan Chintang ctn

Uto-Aztecan Yaqui yaq

†Orthography is not transliterated.
∗ Only languages used in this thesis are listed; these corpora contain more.

= POS tags = Word Alignment = Dependency Trees = IGT

Table 4.2: Matrix describing the different resources used (across the top row) and the infor-
mation provided within each resource, represented by the icons defined at the bottom.

http://www.ethnologue.com/language/hau
http://www.ethnologue.com/language/ind
http://www.ethnologue.com/language/mlg
http://www.ethnologue.com/language/bul
http://www.ethnologue.com/language/fra
http://www.ethnologue.com/language/gla
http://www.ethnologue.com/language/deu
http://www.ethnologue.com/language/hin
http://www.ethnologue.com/language/ita
http://www.ethnologue.com/language/spa
http://www.ethnologue.com/language/swe
http://www.ethnologue.com/language/cym
http://www.ethnologue.com/language/kor
http://www.ethnologue.com/language/ctn
http://www.ethnologue.com/language/yaq
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# Langs # Instances # Tokens Avg Tokens/Instance

1,487 151,633 231,602 4.78

Table 4.3: Data overview for Odin v2.1 data.

4.1.1 Odin v2.1 (Provides: )

Odin, the Online Database of INterlinear text (Xia et al., 2016), is the main repository

for raw IGT instances that I will draw upon. The IGT instances within Odin are raw text,

automatically extracted from the PDF documents which contained them. As a result of the

PDF-to-text conversion, the IGT instances often exhibit corruption, and require cleaning

to fix some of the more common errors (see Section 4.4). The version of Odin used for

the experiments in this thesis was version 2.1, available at http://depts.washington.edu/

uwcl/odin/.

Table 4.3 shows an overview of the amount of data contained in the version of the Odin

data used for this thesis. Due to the large amount of coverage provided, the Odin data

provides IGT instances for nearly every language that I will discuss in this paper, and

great deal more. With over 150,000 instances representing nearly 1,500 languages, the Odin

database holds the potential to bootstrap language tools for an extremely wide array of

languages. Despite having the unique IGT data format to leverage, the Odin database does

not have gold-standard labels on the language data itself, and so other resources are used

for evaluation.

4.1.2 XL-IGT (Provides: )

A small subset of instances drawn from the Odin database used for the experiments in Xia

and Lewis (2007) consisting of data for German, Gaelic (Scottish), Hausa, Korean, Malagasy,

Welsh, and Yaqui. This dataset was of particular interest because the IGT had been cleaned

http://depts.washington.edu/uwcl/odin/
http://depts.washington.edu/uwcl/odin/
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Instances # Lang Tokens Avg Tokens/Instance

Gaelic 67 394 5.88
German 174 1,290 7.41
Hausa 130 780 6.00
Korean 138 718 5.20
Malagasy 128 728 5.69
Welsh 75 460 6.13
Yaqui 84 506 6.02

Total 796 4,876 6.13

Table 4.4: Overview of XL-IGT data

and so was of optimal quality, but also because these languages span a range of language

families. Hausa is a great example of a language that has a large speaker population, but

few resources. Hausa is an Afro-Asiatic language spoken primarily in Nigeria, with a speaker

population of approximately 41 million (Lewis, 2009) but not very many online resources.

Yaqui exemplifies another side of resource-poor languages, an indigenous language of the

Uto-Aztecan family with 12,230 speakers in the Sonoran region of Mexico and Arizona in the

United States (Lewis, 2009). While Welsh and Gaelic have more speakers than Yaqui, they

might similarly be considered threatened minority languages. In this context, NLP tools

might be less valuable in traditional roles, but still of interest for tasks such as language

documentation and preservation. For instance, minority-language detection on microblog-

ging platforms could be used to help minority-language speakers find others who share the

language, or spark interest in those who might like to learn.

The instances in the XL-IGT corpus have been annotated for word alignment and de-

pendency structures. Table 4.4 gives the breakdown of this data set by language. No

gold-standard POS tags are available.



39

Language Instances # Lang Tokens Avg Tokens/Instance

Bulgarian 9 43 4.8
French 40 282 7.1
German 70 419 6.0
Italian 7 28 4.0
Spanish 15 83 5.5

Total 141 855 6.1

Table 4.5: Overview of RG-IGT Data

4.1.3 RG-IGT (Provides: )

This is another subset of the Odin database, this time with the language line, gloss line,

and translation line manually annotated with POS tags, as well as translation-gloss and

gloss-language line alignment.

The gloss line being directly annotated with POS tags was done for the purpose of training

the gloss-line POS classifier described in Section 6.3, but also provides the ability to evaluate

projected POS tags independent of any language-gloss misalignment that may occur. The

languages here were chosen primarily for the author’s ability to understand the orthography

and ensure that the data was clean and well-formatted. This unfortunately limited the set of

languages to only Indo-European languages, but since the primary target for this corpus was

the gloss line, this annotation should be portable to other languages and language families.

This data set also provides annotation for word alignment, but no tree structures. The

same data were developed and used in Georgi et al. (2013). Table 4.5 provides an overview

of the data.

4.1.4 UD-2.0 (Provides: )

This corpus, the Universal Dependency Treebank, v2.0 (McDonald et al., 2013), provides

dependency trees in CoNLL-X format (Buchholz and Marsi, 2006), which provides labeled
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dependency trees, as well as POS tags. Table 4.6 provides a breakdown by language of this

resource.

This is the primary data source that will be used for evaluating POS tags and DSs

on monolingual data. The POS tags used are the Universal POS tags defined by Petrov

et al. (2012), and are the same used for the RG-IGT data. Additionally, the Universal

Dependency project has sought to create treebanks that are syntactically consistent in their

analyses across languages, and thus should reduce errors that might arise from independently

constructed resources, such as in the Hindi-Urdu Treebank Project (Section 4.1.5).

Language Sentences Tokens Types Avg. Tags Per Type

French 16,422 396,511 41,452 1.08
German 15,918 293,460 50,461 1.05
Indonesian 5,593 121,923 19,915 1.08
Italian 7,189 167,873 20,655 1.06
Korean 6,339 69,690 36,323 1.02
Portuguese (Brazilian) 11,998 298,323 30,756 1.08
Spanish 16,007 424,425 46,045 1.08
Swedish 6,159 96,319 15,037 1.03

Total 85,625 1,868,524 260,644 1.03

Table 4.6: Overview of the UD-2.0 data.

4.1.5 HUTP (Provides: )

This corpus consists of a set of IGT instances that were used as guidelines sentences for the

construction of the Hindi-Urdu Treebank Project (Bhatt et al., 2009). The IGT instances

are very clean, and represent the languages in a romanized transliteration. In addition to

the IGT text, this resource also provide POS tags and labeled dependency parses. The

dependency structures created for this project were not created with the same goal of cross-

lingual representation as those in the UD-2.0 corpus, however, so some choices in the format
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of the dependency trees differ, and as a result, evaluation on the two data sets may differ

significantly for reasons other than the particular methodology.

This corpus serves to complement the other IGT-containing corpora in order to evaluate

the POS tagging and dependency parsing methods, and increase the breadth of linguistic

families for which these evaluations are performed. The HUTP uses its own POS tagset,

which can be found at http://verbs.colorado.edu/hindiurdu/guidelines.html.

Language # Instances # Lang Tokens Avg Tokens/Instance

Hindi/Urdu 147 963 6.55

Table 4.7: Overview of the HUTP data.

4.1.6 CTN (Provides: )

This corpus contains a set of IGT examples from the Chintang language of Nepal (Bickel

et al., 2009). The IGT instances themselves are very clean, but as will be discussed in

Section 4.3, the POS tags used in the database are not the same as the Universal Tagset,

and so the use of this resource for evaluation is not as straightforward as the other annotated

IGT corpora shown above.1

Language Instances # Lang Tokens Avg Tokens/Instance

Chintang 8,695 38,896 4.47

Table 4.8: Overview of the CTN data.

1See also Georgi et al. (2015).

http://verbs.colorado.edu/hindiurdu/guidelines.html
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4.2 Tokenization and Transliteration in IGT

While examples like the one in Instance 3.3 show an idealized case of IGT, not all instances

are as amenable to being worked with as German and English. Besides increasing divergence

between languages, there are languages that do not share orthography with English. One

such issue arising from such orthographic differences is how meaning-bearing tokens are de-

limited. Since IGT is ultimately a format for presentation, and typically for a predominately

English-speaking audience, this results in IGT instances that are not given in the original

orthography, or if they are, a romanization that includes whitespace tokenization, and often

morphological analysis using hyphenation. Without the original tokenization, however, an

IGT-bootstrapped tool will be unable to correctly process untokenized input.

Besides the whitespace issue, an orthographic difference between the typical language rep-

resentation and the representation in the IGT presents a different problem. While many lan-

guages use orthographic representations that are now available in Unicode formats, translit-

eration of the orthography is a difficult issue. Standards do exist [e.g. ISO 15919 (Stone,

2004)], but the linguists who create the IGTs may or may not use one. Reasons for not

using the native orthography or phonetic transcription may be to prefer another approach,

such as the International Phonetic Alphabet (IPA), or to simplify the presentation based

on the paper’s intended audience. This means that when it comes to utilizing the infor-

mation extracted from these languages with non-Latin orthographies, matching them with

other resources that may be available for the language may prove difficult. As a result, for

the purposes of this work, experiments that evaluate on monolingual data will be limited to

languages which use Latin orthographies, or perfectly regular transliteration.2

2Japanese and Korean, for instance, occur in both Odin and the UD-2.0 treebank, but are found entirely
in transliteration in the former, and in native orthography in the latter.
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Tag Description

ADJ Adjectives
ADP Adpositions (Prepositions/Postpositions)
ADV Adverbs
CONJ Conjunctions
DET Determiners and Articles
NOUN Nouns
NUM Numerals
PRON Pronouns
PRT Particles
VERB Verbs
X Catchall (Abbreviations/Foreign Words)
. Punctuation

.

Table 4.9: Universal POS Tagset following Petrov et al. (2012)

4.3 POS Tagsets

One of the biggest difficulties in working with massively multilingual data is that the tools

and annotations used in different languages are geared toward a language-specific analysis

for the target language. Using an English POS tagger will typically mean using the Penn

Treebank tagset, which tends to be focused on English constructions. In Yarowsky and Ngai

(2001), the authors focused on projecting English to French, and made the concession to not

distinguish between the mood, person, or number distinctions that are realized on verbs in

French but not English, yet they still worked to distinguish between the VB/VBN/VBG/VBD3

forms. While projecting tags may be feasible between these two Indo-European languages,

using these tags may make less sense when projecting between English and a highly isolating

language where tense is formed by the bare verb and a tense-bearing particle.

A number of works in recent years (Zeman, 2008; de Marneffe and Manning, 2008; Petrov

et al., 2012) have posited different approaches to selecting an appropriate set of part-of-speech

3Present/Past Participle/Gerund/Past
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(POS) tags that can be applied to a wide variety of languages, ideally a tagset that is uni-

versal among languages. This is a difficult undertaking, as Zeman (2008) pointed out, given

that the primary goal of POS tags is to encode a particular bundle of morphosyntactic infor-

mation carried by a given word, specifically, the way in which that information is combined

varies from language to language. Despite this difficulty, Xia and Lewis (2007) used projected

POS tags to reliably determine basic word order for hundreds of languages, highlighting the

utility of a coarse tagset for answering typological questions.

Mapping Between Tagsets With the UD-2.0 corpus using the Petrov et al. universal

tagset, shown in Table 4.9, this tagset seemed a good set to use in my work with other

languages. As a consequence, I used the universal tagset when creating labels for the RG-

IGT corpus, and also had to create mappings for the HUTP and Chintang corpora. The

mappings for these tagsets are shown in Appendix C in Tables C.1 and C.2, respectively.

A number of tagset mappings to the Petrov et al. (2012) set for other languages is

also provided by the authors at https://github.com/slavpetrov/universal-pos-tags,

including mappings from the Penn Treebank tagset. Both the mappings performed for this

thesis and those done by Petrov et al. are made many-to-one, with multiple target tags being

mapped to potentially the same universal tag.

4.4 IGT and Data Cleaning

While much of the data contained in Odin is very straightforward, such as the example in

Instance 3.1, there are ways in which the data in Odin requires modification for use with the

automated methods I will be using here. The data may be non-ideal for one of two reasons.

Either it exhibits corruption resulting from being extracted from PDF documents, or the

author has included metadata in the example that is not linguistic in nature.

In both cases, the Intent system preprocesses the raw Odin data in an attempt to

make it more readily usable. In the former case, fixing the unintended errors arising from

https://github.com/slavpetrov/universal-pos-tags
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(6) a. Carapana (E. Tucanoan; Metzger 1981:34)

pa-w

work-3.SG.FEM.PAST

‘She worked.’ (no evidential reading)

Instance 4.1: An instance of Carapana (cbc), demonstrating some of the non-linguistic in-
formation that is found in IGT instances, including the language name, example numbering,
author citation, and explanation of linguistic phenomena

the format conversion is what I call cleaning, and is the focus of Section 4.4.1. In the latter

case, the removal of inline metadata from the example is what I refer to as normalization,

and address in Section 4.4.2.

Instance 4.1 illustrates several such cases, with example numbering, the language name

(Carapana), a citation for the source of the instance, and an explanation of the intended

interpretation. Instance 4.2 contains an example with both inline metadata, as well as

irregular whitespace.

While these issues are different in nature, both can present problems in extracting proper

inferences from the IGT instances. I will describe some of the most common issues below,

and what preprocessing steps are taken by the Intent system to clean and normalize the

data.

doc_id=430 513 520 L M B B B B G T+AC+LN

language: arabic (arb)

line=513 tag=L: 8) daxal{ *-na / -at} n-nisaa -u makaatib-a-hunna

line=514 tag=M:

line=515 tag=B:

line=518 tag=B:

line=519 tag=G: entered{ *-3. PL.F. / -3.SG.F.} the-women(3. PL.F.)-NOM office(PL.)-ACC-their

line=520 tag=T+AC+LN: ‘The women have entered their offices.’ (Fassi Fehri, 1993: 32)

Instance 4.2: A raw IGT instance of Arabic (ara) in Odin, extracted from Nasu (2001).
This instance shows corruption on the gloss line, numbering on the language line, and other
errors. Dealing with these sources of noise is key to improving performance.

http://www.ethnologue.com/language/cbc
http://www.ethnologue.com/language/ara


46

4.4.1 Cleaning: Fixing PDF-to-Text Corruption

Spurious or Missing Whitespace In Instance 4.2, both lines 513 and 519 show tokens

that have had spurious whitespace inserted, likely because of the pdf-to-text extraction pro-

cess mistaking kerning for whitespace. The token ‘n-nisaa -u’ on line 513 should not

have whitespace between the final -u, nor should the ‘3. PL.F.’ on line 519 have space

between the ‘3’ and ‘PL’. These may seem like simple errors, and they can sometimes be

easily fixed by reattaching sentence-internal characters separated by morphological bound-

aries such as ‘.’ and ‘-’, but similar problems sometimes occur between non-punctuation

symbols making such reattachment heuristics trickier.

Though the example in Instance 4.2 does not contain any cases where whitespace has

been erroneously omitted, such cases do exist in the data. These instances are more difficult

to detect, particularly if the whitespace is missing from the language line, where less is known

about language in question. Unlike the semi-structured gloss line, which contains a known

vocabulary of English and grammatical terms, it is more difficult to reconstruct the intended

structure of words and morphemes for a previously unseen language.

In cases of either spurious or missing whitespace, the instance is discarded if the language

line and gloss line do not contain the same number of whitespace-delineated tokens. Whether

this mismatch is due to a conversion error or was the result of the author’s formatting, since I

assume that the gloss line refers one-to-one to language-line elements, a mismatch means this

assumption can no longer be made. Conversely, instances where the number of whitespace-

delineated tokens do match, but corruption has caused a shift, can lead to cases where

one-to-one gloss alignment produces incorrect data.

If the language line of the instance being cleaned were from a language with abundant re-

sources, language models could be built that might help, such as detecting out-of-vocabulary

words that are likely metadata, or at the character level, where spaces are likely erroneous.

However, with the IGT data, although such methods may be possible on the gloss line, the
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language line is likely not from a language where there is not enough data for this, and so

this language line corruption is ultimately left in.

Line Corruption Instances can also end up being corrupted in ways such as that in

Instance 4.3, compared to the original instance in Instance 4.4. In this case, a single line

that was intended to contain a word with several subscripts and diacritics had the line split

into two lines, losing the diacritic from the character it was meant to modify, and either

splitting the subscripts or combining them with the neighboring word. In Odin, at least

36,716 out of the total 151,633 instances were flagged by the original IGT detection algorithm

as exhibiting line corruption.

In the cleaning process, two approaches to fix these sorts of corruption were attempted.

The first involved finding whitespace between the two lines, or cases where a combining

character, such as the ‘^’ on line 27, is present in isolation, and attempt to combine the

characters. In this case, this would yield the desired result of hâld, but sometimes lines

line=26 tag=M+LN: (3) Frisian

line=27 tag=L+CR: Maxi h^ d

line=28 tag=L+CR: al himi /*himsels i,j

line=29 tag=G: Max behave.3SG him/himself

line=30 tag=T: ‘Max behaves (himself ).’

Instance 4.3: Example of a Frisian (fry) IGT instance exhibiting line corruption, character
corruption, and language names and parentheticals, extracted from de Swart (2003).

(3) Frisian
Maxi hâld himi/*himselsi,j
Max behave.3SG him/himself
‘Max behaves (himself).’

Instance 4.4: Original text of Instance 4.3 as intended by the author.

http://www.ethnologue.com/language/fry
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wrap instead of combining, and in these instances the appropriate behavior would be to

concatenate the lines rather than merge. Due to the difficulties in attempting to merge,

when such multi-line corruption is encountered, I have chosen to concatenate the lines.

4.4.2 Normalization: Removing Non-Linguistic Data

Judgments and Judgment Alternation Instance 4.2 also has another interesting phe-

nomenon which is helpful for illustrative purposes, but is difficult to parse programmatically.

This phenomenon is the alternation in judgment between the -na/-at suffixes on line 513,

which the gloss line (519) clarifies are the 3.PL.F/3.SG.F suffixes, respectively. Judgment

markings in themselves are a particularly interesting feature of IGT, and potentially a very

useful one for providing negative examples to parsers or language models. However, as the

data is often intended for display and not automated parsing, whether the ungrammaticality

refers to the utterance being unacceptable, or a particular interpretation being unavailable,

is often unclear without the explanatory prose. I have chosen to save that topic for future

study.

Instance Numbering Many IGT instances occur with a label of some form, such as

‘a)’, ‘ix.’, or ‘[3]’ on the language line, or elsewhere, for subsequent reference in the

containing publication. While a simple regex can catch most of these instances, they can

also contribute to language–gloss-line misalignment.

Citations Instance 4.2 contains a reference to the publication from which the IGT instance

itself was cited. When such citations occur on the translation line, as in this example, they

may contribute to the English-language parser or POS-tagger producing an incorrect result.

These cases are not particularly problematic, however. That said, if they occur on the

language or gloss line, they can again contribute to misalignment.
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Languages with ≥1
Instance

Instances

Unfiltered 1,497 157,974
Filtered 1,223 61,711

Table 4.10: Result of Intent filtering on instances in Odin.

4.4.3 Intent Filtering

After the cleaning and normalization processes have been run, Intent checks to see whether

the instances are valid and useful for further processing. After the cleaning and normalization

processes have run, a check is done on whether the number of whitespace-delineated tokens

between language and gloss lines match. If they do not match, the instance is discarded. An

instance is similarly discarded if it is lacking a language, gloss, or translation line, or if any

of those lines are empty after the cleaning and normalization processes have run. Table 4.10

shows the results of this filtering procedure on the instances in Odin, filtering out 61% of

the total instances.

Cleaning and Normalization Failures Neither properly cleaned instances nor properly

filtered instances contribute erroneous data. The cleaning and normalization processes can,

however, make errors that do not get caught and filtered out. For instance, Instance 4.5 shows

an instance of an IGT instance where the language-line cleaning has correctly removed the

author citation, but erroneously removed the token *(dee) using the regular expression

/\*.*[a-z]\)/ intended to remove instance numberings. Meanwhile, the language name

Pashto was not removed. As a result, the number of whitespace-delimited language line

tokens and gloss line tokens match, but are incorrectly glossed.
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Plaar mee *(dee) léeg-i Pashto

father 1.SG 2.SG send-PRES.3.SG

‘Your father is sending me.’

(a) Original IGT instance, before cleaning.

Plaar mee léeg-i Pashto

father 1.SG 2.SG send-Pres.3.SG

‘Your father is sending me’

(b) Cleaned IGT instance with faulty lang–gloss align-
ment

Instance 4.5: A Pashto (pst) instance extracted from Neeleman and Szendrői (2007) showing
faulty cleaning that results in an incorrectly glossed language line.

4.4.4 Future Work in Cleaning

These are just a few of the issues with noise that are present in the IGT instances found in

Odin database. At the time of writing, there are two ongoing projects to address some of the

noise issues identified here. The first is a continuation of the work done by the information

engineering and synthesis for Resource-Poor Languages (RiPLes) project (Xia et al., 2016),

using PDFLib’s Text and image Extraction Toolkit (TET) (PDFLib GmbH, 2015), which

performs substantially better than the original pdftotext program (Foo Labs, 2014) used

for the initial conversion. The second approach uses human annotators to manually clean

the extracted instances, using the interface developed as a part of this work, and discussed

further in Section 8.8.

While data from these projects is not available at the time of writing, I expect that many

of the results presented here would benefit modestly by use of the cleaner data. Any amount

of noise is likely to affect the performance of these IGT-based systems, particularly those

languages for which the number of available instances is lower. Minimally, and crucially, data

cleaning will increase the number of IGT instances available for downstream processing. Even

a modest increase in the number of available instances could improve the performance of the

tools developed over the data, and possibly, the number of languages that can be directly

affected.

http://www.ethnologue.com/language/pst
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4.4.5 Consistency Issues

Beyond issues with cleanliness and normalization, IGT data also has another issue, and that

is consistency between authors. While there is a set of guidelines for how IGT data are to

be represented in linguistics paper, in the form of the Leipzig Glossing Rules Bickel et al.

(2008) (LGR), these guidelines are not always strictly followed. In some instances, authors

delineate all morphemes in the language line with hyphens, in others they are not separated.

Many rules are also optional, such as using a colon when morphology is present, but the

author does not wish to show the segmentation. As a result, between instances, not all rules

are used consistently, so a system looking to deal with these glosses must be robust to such

inconsistencies.

4.5 Data Formats

The corpora listed above are made available in various data formats. The UD-2.0 corpus is

distributed in the CoNLL-2009 (Hajič et al., 2009) format, and the HUTP, XL-IGT, and

CTN corpora were provided in various text formats. The 2.1 version of Odin and the RG-

IGT corpora are currently available in Xigt-XML, a format first presented by Goodman et al.

(2014) that can preserve the original text of an IGT instance while allowing for terse standoff

annotation layers. The Xigt-XML format is also used internally by the Intent package that

will be discussed in Chapter 8. Sample 4.1 shows a snippet of a Hindi IGT instance rendered

in the Xigt-XML format, showing the raw text in the top annotation “tier,” as well as word

segmentation and POS tags. For a full discussion of this data format, refer to Goodman

et al. (2014).
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<igt id="igt1">

<tier id="n" type="odin" state="normalized">

<item id="n1" tag="L">rAma ne mohana ko nIlI kiwAba xI</item>

<item id="n2" tag="G">ram erg Mohan acc blue book gave</item>

<item id="n3" tag="T">Ram gave a blue book to Mohan</item>

</tier>

<tier id="p" type="phrases" content="n">

<item id="p1" content="n1" />

</tier>

<tier id="w" type="words" segmentation="p">

<item id="w1" segmentation="p1[0:4]" />

<item id="w2" segmentation="p1[5:7]" />

<item id="w3" segmentation="p1[8:14]" />

<item id="w4" segmentation="p1[15:17]" />

<item id="w5" segmentation="p1[18:22]" />

<item id="w6" segmentation="p1[23:29]" />

<item id="w7" segmentation="p1[30:32]" />

</tier>

<tier id="w-pos" type="pos" alignment="w">

<item id="w-pos1" alignment="w1">NNP</item>

<item id="w-pos2" alignment="w2">PSP</item>

...

</tier>

...

</igt>

Code Sample 4.1: Example of the Xigt-XML data format.



53

Chapter 5

WORD ALIGNMENT

One of the features of IGT that makes it extremely useful for resource-poor languages is

the gloss line. As discussed in Section 3.1, the gloss line can be used to align the language line

with the translation line using matching tokens, leading to the ability to transfer language

annotation by these alignments. This chapter will discuss how IGT as a resource can be used

to obtain high-quality alignments between the language lines and translation lines using a

variety of methods. Due to its unique format, these alignments are of a much higher quality

than would otherwise be achievable for the same amount of data using traditional statistical

alignment methods. As intra-IGT word alignments of this type are required for projection-

based transfer methods, obtaining alignments that are precise and with as broad a coverage

as possible is extremely important for any task requiring projected data.

Given the importance of obtaining high-quality word alignment among language and

translation lines, I will discuss and compare two different approaches for aligning IGT data,

using the manually aligned instances in the RG-IGT and XL-IGT corpora as evaluation

targets. A heuristic approach based upon the repeating tokens with several variations is

described in Section 5.2, and several different types of traditional statistical approaches are

discussed in Section 5.3. Finally, I also discuss some methods by which the two approaches

may be combined in Section 5.5.

5.1 Evaluating Word Alignment within IGT Instances

In order to evaluate and compare the different methods and settings used for the experiments

in this section, I will be using the manual alignments in the RG-IGT and XL-IGT corpora.
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When evaluating, every alignment between one word and another is considered. Each of

these word-to-word pairs is counted in the alignment to be evaluated, and compared to the

word-to-word pairs in the gold standard to calculate precision, recall, and F1-Score. For the

purposes of this work, I will not differentiate between sure and possible alignments, and will

consider every alignment in the gold standard as a sure alignment.

5.2 Heuristic Alignment

The first approach to alignment leverages the basic format of IGT, discussed in Section 3.1;

namely, the repetition of tokens from the gloss line in the translation line. As the gloss line

is intended to be an intermediary step between the foreign language and the language of the

reader, the gloss line is typically populated with many of the same words (or synonyms) found

in the translation. Producing an alignment, then, can be done programmatically much in

the same way that a human reader might do so; by finding the words in translation and gloss

that share meanings, and then associating the . One major complication, as I will discuss, is

precisely what “sharing a meaning” means for certain gloss and translation tokens, as this

is not always entirely straightforward.

I examined the use of six different manipulations of the gloss line in order to achieve

the best possible alignment: (1) Basic String Matching, (2) Tokenizing for Morphology,

(3) Allowing Multiple Matches, (4) Stemming Words, (5) Matching Grammatical Markers,

(6) Matching POS tags. As each heuristic is added, the alignment algorithm was run and

evaluated using the alignments RG-IGT and XL-IGT corpora.

The rest of this section discusses the implementation of these approaches, and the eval-

uation is shown in Fig. 5.1 and Table 5.2.
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1 2 3 4 5 6

inepo mache’eta-m into kuchi’i-m kecha-k .

1SG machete-PL and knife-PL put.up.SG.OBJ-PST .

I put up the machete and the knife .

1 2 3 4 5 6 7 8 9

Instance 5.1: IGT Instance in Yaqui (yaq) showing how morphology is given on the gloss line.
Gloss token #5, ‘put.up.SG.OBJ-PST’, shows both the morpheme marker ‘-’, which typ-
ically marks morpheme boundaries, and the combining marker ‘.’ indicating that multiple
aspects are contained within a single morpheme.

String Matching

The most simple baseline approach to aligning the translation and gloss lines is simply

tokenizing the strings on whitespace and searching for exact string matches. This is the

baseline approach used—acting as a strong baseline, given the F1-scores shown—yet there

are many reasons why a token on the gloss line doesn’t match a token on the translation line

exactly. Differences in capitalization, inflection, or use of non-language tokens and symbols

are among the issues that other approaches address. As an extremely simple first pass beyond

the baseline system, I perform case-insensitive string matching – this improves the alignment

performance somewhat, but not drastically.

Tokenizing for Morphology

As is shown in Instance 5.1, gloss tokens do not merely consist of the words used in the

translation, but also contain morphological information and inflection. According to the

Leipzig Glossing Rules (Bickel et al., 2008), morphemes should be delineated in the gloss by

hyphens (‘-’), clitics by equals signs (‘=’), and inflection or other information that is not

morphological in nature with periods (‘.’). While this is not always the case in the Odin

data, I would still like to be able to recover alignments between strings that are separated by

http://www.ethnologue.com/language/yaq


56

these characters. For instance, in Instance 5.1, I would like the system to create the alignment

5:{2,3}, mapping the gloss token ‘put.up.SG.OBJ-PST’ to both ‘put’ and ‘up’. For the

system to find matches like these, it tokenizes each portion of the gloss line, splitting the

strings on the morpheme separators (-, = and the compound gram marker, period ‘.’)t.

There were also a few cases where parentheses and colons were used, so I included these as

well. Tokenizing and performing case-insensitive matching boosted the F1-score from 0.71

to 0.83, a 41% reduction in error.

Finding Multiple Matches

I make one further simple modification to finding matches when there are repetitions of a

token on one or both lines of the gloss or translation. Instance 5.2 shows two instances

where this occurs. When a token is found that has multiple occurrences on one or more

1 2 3 4 5 6

i mwuncey-nun ku mwuncey-wa kath-ta .
this problem-Top that problem-as same .
This problem is the same as that problem.

1 2 3 4 5 6 7 8

(a) IGT Instance from Korean (kor) demonstrating repetition of words. ‘problem’ is repeated twice in both
gloss lines and translation lines, so alignment is done from left to right in order of the pairs.

1 2 3 4 5 6 7 8

nanomboka niteny ity tonon-kira ity Rabe indroa .
began knock this door this Rabe twice .
Rabe twice began to knock on this door.

1 2 3 4 5 6 7 8

(b) In this example from Malagasy (mlg), ‘this’ is repeated twice in the gloss, but only appears once in the
translation. While in this case, it is possible that the occurrence in ‘this Rabe’ is not meant to align with
the instance in ‘this door’, but the algorithmic output is in keeping with that in the gold standard.

Instance 5.2: Examples of multiple occurrences of tokens between gloss and translation lines.

http://www.ethnologue.com/language/kor
http://www.ethnologue.com/language/mlg
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lines the words are aligned in order of occurrence left-to-right until one side runs out of

occurrences, and then the remaining tokens are aligned to the last token on the other side.

In Instance 5.2a, the alignment is one-to-one and done left to right. In Instance 5.2b, there

are multiple occurrences of ‘this’ on the gloss line, but only one on the translation line.

This modification aligns the single gloss occurrence of ‘this’ with the multiple occurrences

on the translation line. While in this case, it may be the case that the occurrence in ‘this

Rabe’ is meant to be a determiner which is unaligned in the translation, such an ambiguity

is hard to discern with certainty, and the gold standard alignment agrees with the output of

the algorithm for this case.

Finding Root Forms

While splitting the gloss line by morpheme improves performance, the words on the gloss line

are transliterations and not always inflected as they would be in the translation. Figure 5.3

gives an example of this issue, showing an instance of Malagasy where the token on the gloss

line ‘dry-IV-VN’ does not match the inflected form found in the translation, ‘drying’.

To solve this mismatch, I next attempted a chain of stemming approaches, starting

with the implementation of the snowball stemmer (Porter, 2001) found in NLTK (Bird

et al., 2009). If a stem could not be found this way, NLTK’s implementation of the morphy

lemmatizer from WordNet (Princeton University, 2010) is used to attempt to lemmatize

verbs, nouns, or adjectives.1 After this modification, the performance is boosted to an F1-

score of 0.93.

1 I did not use the morphy package directly, as the software for this thesis was written in Python. NLTK
is easily installable for Python, and this allowed for a simpler code implementation.
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1 2 3 4 5

ı̀igaa tanàa gàa tsanèewaa .

gown 3fs-CONT at dry-IV-VN .

The gown is drying .

1 2 3 4 5

Instance 5.3: IGT Instance from Malagasy (mlg) demonstrating the need for finding the
root forms of morphs in the gloss line. Gloss token #4, ‘dry-IV-VN’ shows the word ‘dry’

whereas the translation uses the English inflected form ‘drying’.

Finding Grammatical Markers (Grams)

Finally, the presence of non-English subwords such as ‘1SG’ or ‘MASC’ in the gloss line is

part of the power of the IGT format and is key to allowing a heuristic aligner to pick up

1 2 3 4 5 6 7 8

Cheisiodd Gwyn ddim beidio ag ateb y cwestiwn.

try-PAST-3SG Gwyn NEG NEG with answer the question.

Gwyn did n’t try to not answer the question .

1 2 3 4 5 6 7 8 9 10

(a) IGT Instance from Welsh (cym) demonstrating how the two ‘NEG’ grams representing negation are aligned
with ‘n’t’ and ‘not’ when gram matching is enabled.

1 2 3 4 5 6 7 8

inepo Diana-ta bicha-k , apoik achai into ketchia .

1SG Diana-NNOM.SG see-PST , 3SG.POSS father and too .

I saw Diana and her father .

1 2 3 4 5 6 7 8 9

(b) IGT Instance from Yaqui (yaq) demonstrating how the ‘1SG’ and ‘3SG.POSS’ tokens from the gloss line
are aligned correctly to ‘I’ and ‘her’ on the translation line when gram matching is enabled.

Instance 5.4: IGT instances demonstrating the importance of looking for grammatical mark-
ers, or “grams,” on the gloss line.

http://www.ethnologue.com/language/mlg
http://www.ethnologue.com/language/cym
http://www.ethnologue.com/language/yaq
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Gram Possible Meanings

1sg i, me

2sg you

2pl you

3sg he, she, him, her

3sgf she, her

3sgm he, him

3pl they, their

poss his, her, my, their

neg n’t, not

det the

Table 5.1: Gram-to-word lookup table used to match grams with possible translations.

a few more matches. Instance 5.4 shows two IGT instances in which matching the grams

leads to improvements in alignment. After previous matching has been performed, a second

pass looks for gloss tokens in a user-defined list and looks for possible matches from a simple

table lookup, matching either full words or sub-word level tokens. My list containing the

mappings can be found in Table 5.1. This list is not exhaustive, but is targeted at the fact

that IGT instances frequently provide only the person/number gloss for pronouns, while

using the lexical item on the translation line.

Matching POS Tags

The final alignment heuristic I experimented with was using the POS tags of the remaining

unaligned gloss and translation tokens to attempt to recover additional alignments. POS

tags are generated on the gloss tokens with the classifier in Section 6.3, and POS tags on

the translation line are generated using the Stanford Tagger (Toutanova et al., 2003), both

trained using the universal POS tagset (Petrov et al., 2012) mentioned in Section 6.1. Next,

the tokens that remain unaligned after the previous methods are aligned the same way as

described in the multiple alignment section; left-to-right and one-to-one, and any remaining
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Figure 5.1: Graph showing the performance of the heuristic matching approach between
gloss and translation as heuristics are added going from top to bottom.

tokens on either side are aligned with the rightmost token of the other.

Summary

Fig. 5.1 shows the results of incrementally adding heuristic approaches to the alignment

algorithm on both RG-IGT and XL-IGT corpora. The baseline approach, matching only full

strings between translation and gloss lines, gives an F1-score of 0.62 on the RG-IGT data,

and 0.71 on the XL-IGT data. While the precision of this baseline approach is extremely high

at 0.95, the recall is very low, at 0.46 and 0.57 for the two corpora. Each additional heuristic

improves recall, culminating in 0.84 on the RG-IGT data and 0.82 on the XL-IGT data. The

precision remains nearly the same for all heuristics, save the POS matching heuristic, where

despite the increase in recall, the precision drops significantly. Despite the drop in precision,

the RG-IGT data still shows an increase in F1-score from 0.83 to 0.88, while the XL-IGT
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data drops from 0.86 to 0.81.

The addition of heuristics up until the POS tag matching improved overall performance,

and so the heuristic system to use in other experiments will be the system containing the set

of heuristics leading up to, but excluding the POS tag matching, and referred to as “Heur.”

Very high-precision alignments might be more useful for some tasks, while higher recall,

or more balanced approaches might be better overall, so given the large increase in recall

that the POS tag matching system offers, this system will also be present in subsequent

comparisons, labeled as “Heur +POS.”

Table 5.2 shows the precision, recall, and F1-scores for the “Heur” system on both cor-

pora, broken down by language. Given the small size of the corpora, I am wary of making

conclusions about differences in the individual languages, but the variation between lan-

guages also corresponds with variation between documents and authors, and so is a useful

reminder that conventions and formatting of IGT instances may differ greatly among the

data in Odin.

In summary, this heuristic approach to word alignment within IGT is simple, straightfor-

ward, and viable for languages with as few as a handful of IGT instances. Despite the multiple

strengths of this approach, it is a rule-based approach, and performs the same whether given

ten IGT instances or ten thousand. Given the domain of resource-poor languages, such a

rule-based approach is a good place to start, but an important path of inquiry is whether

performance be improved when additional data is available. The next section explores the

possible ways in which the large and expanding set of instances in Odin might be harnessed

en masse to improve IGT alignment performance.

5.3 Statistical Alignment

The heuristic approach above takes advantage of IGT’s unique format to align the language

line and translation line by using the gloss line as a pivot. The typical approach to such
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XL-IGT

Language Precision Recall F1-score

Gaelic 0.97 0.90 0.94
German 0.93 0.81 0.87
Hausa 0.98 0.66 0.79
Korean 0.98 0.73 0.83
Malagasy 0.97 0.89 0.93
Welsh 0.96 0.79 0.87
Yaqui 0.99 0.72 0.83

RG-IGT

Language Precision Recall F1-score

Bulgarian 0.93 0.66 0.77
French 0.97 0.73 0.83
German 0.96 0.76 0.85
Italian 1.00 0.61 0.76
Spanish 1.00 0.64 0.78

Table 5.2: Results of the heuristic alignment by language, without using POS tags.

bilingual alignment would be to use a statistical alignment system for phrasal alignment, such

as Giza++ (Och and Ney, 2003b), to align language and translation lines directly. I will

examine this approach in Section 5.3.1, while laying out an alternate approach to statistical

alignment in Section 5.3.2 that aligns gloss lines with translation lines in a manner similar to

the heuristic approach. Evaluation was performed following the description in Section 5.1,

and results are shown in Fig. 5.2.

5.3.1 Baseline Statistical Alignment Approach

For a baseline approach of aligning two languages using parallel sentences, I build a set of

parallel sentences between the language lines and translation lines of all the instances for

a given language in Odin, and use mgiza (Gao, 2013) to produce word alignments. This

approach is labeled as “L-T” in Fig. 5.2, as this approach aligns the language line (‘L’)

directly with the translation line (‘T’). As noted in Chapter 4, these corpora are relatively

small, sometimes only a few hundred sentences, which is typically not large enough to achieve

good word alignment results. This is reflected clearly in the results, as the L-T systems

perform well below any other alignment system shown here, with F1-scores of 0.47 and 0.51

for the RG-IGT and XL-IGT data, respectively.
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Figure 5.2: Graph showing performance of the different statistical approaches on the different
corpora, with the Heuristic +POS system for comparison.

5.3.2 Gloss/Translation-Based Approach

While using the language and translation lines directly is possible, and has the benefit of

being able to use the IGT instances in the Odin database that do not include a gloss line, it

is also possible to align the IGT instances based upon their translation and gloss lines, as in

the heuristic approach. Rather than creating a parallel corpus of language and translation

lines for this approach, the parallel corpus consists of gloss lines and translation lines for

each language. This simple change improves alignment F1-scores from the L-T system’s 0.47

and 0.51 to 0.78 and 0.62 on the RG-IGT and XL-IGT corpora.

There are even more substantial gains to be made over using only the gloss and translation

lines for a single language, however. Using the gloss line affords a sort of a “pseudo-language,”

as described in Section 3.1.3, that is found in every IGT instance with an English translation
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throughout Odin. Therefore, instead of attempting to create a statistical alignment based

upon only the several hundred sentences for a selected language, the entire set of 151,633

instances across all languages can be used. This does in fact increase performance, as seen

in Figs. 5.2 and 5.6, improving F1-scores in the RG-IGT data from 0.78 to 0.84, and in the

XL-IGT data from 0.62 to 0.78.

While this improvement is notable, the gloss-line “pseudo-language” presents a particular

challenge to a statistical word alignment system in that the word order is variable. Its order

reflects that of the glossed language, and therefore is not fixed over the whole set of Odin

instances. As a consequence, it is likely that further experiments on tweaking the distortion

parameter for the alignment model might boost performance even higher.

5.3.3 Other Settings

Two other settings that I looked at with the statistical alignment systems were the choice

of symmetrization heuristic and software package. Symmetrization heuristics are the meth-

ods by which bidirectional alignments are combined. Fig. 5.3 shows an hypothetical set of

unidirectional alignments between English→French and French→English. Also shown are

two potential solutions for combining these alignments; either by taking the Intersection of

the alignments and selecting only the word pairs that are aligned in both instances, or the

Union of all word pairs aligned in either direction.

not

ne pas

not

ne pas

not

ne pas

not

ne pas

English

French

E→F F→E Intersection Union

Figure 5.3: Illustration of resolving a potential difference in unidirectional alignments be-
tween French and English using Intersection and Union Symmetrization heuristics.
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Figure 5.4: Precision, Recall, and F1-score for the different symmetrization heuristics on the
statistical approaches on the XL-IGT and RG-IGT corpora.

To compare symmetrization heuristics, I ran union, intersection, and grow-diag-final,

and compared each of these against the single translation→gloss alignment. Figure 5.4 shows

the results of these experiments. While the grow-diag-final and union methods did boost

recall over intersection, the intersection approach was higher than any other method

in precision by 0.2 (absolute), and thus still comes out ahead for all methods in terms of

F1-score. As a result, I used the intersection symmetrization heuristic as the default

statistical alignment symmetrization heuristic in all other experiments.

Finally, to compare software packages, I also ran the fastalign software package (Dyer

et al., 2013), an optimized reparameterization of IBM model 2 on the G-T and G-T+Heur

systems. The graphs in Fig. 5.5 show the comparison. While performing roughly the same

in recall, mgiza does outperform fastalign with substantially better precision evaluating

on the XL-IGT data, and modestly better on the RG-IGT data, for an overall higher F1-

score. The mgiza package also has the further advantage of being able to precompute some
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Figure 5.5: Comparisons of the fastalign (Dyer et al., 2013) software package with mgiza

(Gao, 2013).

of the alignments and “force” further alignments using a transductive approach,2 resulting

in much faster program execution time. For these reasons, I also use this software package

for statistical alignments in this thesis.

5.4 Combining Statistical and Heuristic Alignment

In an attempt to capture both the precision of the heuristic approach with the possible

breadth of the statistical approach, I also performed heuristic alignment across the Odin

corpus, and added the matching gloss/translation token pairs identified by the heuristic

aligner as parallel sentences to the input to the statistical aligner. As the graph in Fig. 5.2

shows, this improves performance greatly over the baseline, and when used in conjunction

with the gloss/translation lines from the Odin database, results in the best performance

2https://web.archive.org/web/20160322220830/http://kyloo.net/software/doku.php/mgiza:

forcealignment

https://web.archive.org/web/20160322220830/http://kyloo.net/software/doku.php/mgiza:forcealignment
https://web.archive.org/web/20160322220830/http://kyloo.net/software/doku.php/mgiza:forcealignment
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Figure 5.6: Precision, Recall, and F1-score comparing alignment methods.

among the statistical systems.

5.5 Future Work

While the experiments here cover some of the ways in which IGT instances can be aligned,

there are still other methods that I have not explored, and will briefly mention a few that

may be attempted in future work.

5.5.1 “Clue-based” Alignment

Tiedemann (2003) described an interesting approach to word alignment, wherein heuristics

are run between words in a language pair to build up a “clue matrix” that is used to determine

alignment. Some of the heuristics include a dice coefficient, for identifying co-occurrence

throughout the corpus; and the longest common sub-sequence ratio (LCSR), for identifying

cognates and matching POS tags. Each heuristic is combined to produce a score for each

word pair in the clue matrix, and then a Viterbi-like algorithm is used to select the best
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combination of alignments from the matrix.

This seems to be an approach that would be extremely well-suited to combining a statis-

tical analysis of the translation/gloss line with the strong string-similarity benefits, and the

ability for the Intent system to produce gloss-line POS tags.

5.5.2 Constrained Giza++ Search

A second approach outlined by Gao et al. (2010) plays to the strengths of being able to ob-

tain high-precision alignments through IGT, while allowing for the weakness of incomplete

coverage in the provided alignment examples. The essence of this approach is to use a source

of high-precision alignments to constrain the EM hill-climbing of the word alignment. In

brief, this constraint means that for an alignment a = {a1, a2, . . . , aj} and partial alignments

α = {α1, α2, . . . , αj} on the sentence pair f, e, the translation probability t(f, a|e, α) will be

zero if the alignment a does not fit the constraints of the partial alignment α. This approach

is extremely promising for being able to maintain the high precision of the alignments ob-

tained by the heuristic approach, while recovering some of the unaligned tokens that such a

statistical approach may recover.

5.5.3 Bootstrapping Alignment for Other Bitexts

With IGT containing language and translation lines, as well as being able to identify ex-

tremely high-precision word pairs through the use of the heuristic alignment methods, the

resource provides both full parallel sentences, as well as likely word pairings between the

English translation line and the target language. Although I have focused primarily on work

aimed at very resource-poor languages in this thesis, there may be languages for which par-

allel corpora with English are available. For these languages, it would be possible to use

the word pairs produced by the heuristic approach to seed the word alignment of a sta-

tistical alignment approach. Using the aligned word pairs from the IGT data in this way
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might not improve performance for languages where a large amount of parallel sentences are

available, but for languages where only minimal parallel corpora are available, this kind of

bootstrapping might produce significant gains in word alignment performance.

5.6 Summary

In this chapter, I laid out two main approaches to finding word alignment within IGT

instances; heuristic and statistical. I also looked into combining the approaches by feeding

the results of the heuristic matches into the statistical data in order to combine the higher-

recall statistical approach with the higher-precision heuristic method. In the end, the Heur

+POS system achieved an F1-score of 0.81 on the XL-IGT corpus data, and 0.88 on the

RG-IGT data, to the best statistical system’s 0.80 and 0.86. Given that both of these

evaluation corpora are relatively small, these differences may not be particularly significant,

but it seems that optimizing for high precision with the fairly noisy Odin data achieves the

most favorable word alignment results. While the heuristic systems with and without POS

tags were largely similar in F1-score, due to the Heur −POS system’s superior precision, I

will use this system as the default heuristic system elsewhere in this thesis.

Similarly, the mgiza software outperforms FastAlign, intersection works as the best

symmetrization method, and the G-T+ODIN+Heur system outperforms the other statistical

methods. I will use this combination of settings as the default for the statistical alignment

method, referring to this combination elsewhere in the thesis as simply Stat for the G-

T+ODIN setting, or Stat+Heur for the G-T+ODIN+Heur setting.

While aligning IGT instances may be helpful in developing word lists on its own, the

primary reason for its inclusion here is as an upstream task for projection of linguistic

information such as part of speech tags and dependency parsing. In the following sections,

Chapter 6 and Chapter 7, I will use the results of these aligned IGT instances to perform

further enrichment.
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Chapter 6

PART-OF-SPEECH TAGGING

The next task I will describe is how IGT data may be used to perform part-of-speech

(POS) tagging. POS tagging is a subset of many other annotation tasks, such as dependency

parsing. Automatically created annotators that could apply POS tag labels to IGT data

could be generally useful, such as in linguistic fieldwork, or large-scale typological studies.

In this section, I will describe two primary goals, the first being using IGT to produce

POS tags for the target language line of IGT. The second goal is using this POS-tagged

IGT to train POS taggers that can be used to tag novel, monolingual data. Within the first

goal of obtaining POS tags for IGT instances, I will look at three approaches. The first of

these approaches will be the standard projection-based IGT Tagger (Section 6.2), while the

second will be an IGT Tagger based upon classification of the gloss line (Section 6.3). A third

approach will look at how both of these first two approaches may be combined (Section 6.4). I

will discuss research done as a case-study in using both of these approaches on an endangered

languages in Section 6.5, and finally, how both of the approaches for obtaining language-line

POS tags could be used to train monolingual POS taggers (Section 6.6).

6.1 Task Overview

The tasks that I will be describing in this section will be the POS tagging of both the language

lines of IGT instances from the RG-IGT corpora, as well as monolingual language data from

the UD-2.0 corpus. Gold-standard IGT tags from the Petrov et al. universal tagset are

available on both the RG-IGT and UD-2.0 corpora, and both tasks will be evaluated for

their tagging accuracy on the gold-standard tags provided by the respective corpus.



71

nnisaau daxalna makaatibahunna
the-women(3.PL.F.)-NOM entered-3.PL.F office(PL.)-ACC-their(F.)

their offices.”“The women have entered

LANG
GLOSS
TRANS

Instance 6.1: An Arabic (ara) IGT instance of the sentence “The women have entered their
offices”.

To give a concrete example of how IGT may be used to accomplish POS tagging in these

settings, Instance 6.1 shows a typical IGT instance in Arabic. In this example, there are

several English words that are shared between the gloss and the translation, and the gloss is

extensively marked-up. A linguist reading this example will immediately notice that there

is a substantial amount of information provided about each word in the Arabic.

Section 3.1.2 gave a high-level overview of using a projection algorithm to use English-

language tools on translation line then transfer this annotation to the language line. In-

stance 6.2 illustrates just such a case, where the POS line at the bottom shows the POS tags

assigned by an English-language POS tagger. These tags are associated with the English

words on the TRANS line, which in turn are aligned with portions of the tokens on the GLOSS

nnisaau daxalna makaatibahunna

the-women(3.PL.F.)-NOM office(PL.)-ACC-their(F.)

their offices”“ The women have entered

LANG

GLOSS

TRANS

  DET NOUN VERB VERB PRON  NOUN

(NOUN) (VERB) (NOUN)

POS

PROJECTION

entered-3.PL.F

Instance 6.2: An illustration of the IGT instance from Instance 6.1 where the translation
has been POS tagged, and then projected via the gloss line.

http://www.ethnologue.com/language/ara
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Di Gianni rimpiango di non  essermi     ricordata

of Gianna regret    of not  be-SE.1SG   remembered.F.SG

“Of Gianni I regret    not   having      thought of.”

LANG

GLOSS

TRANS

Instance 6.3: An example of IGT from Italian (ita) where gloss and translation words do
not match precisely.

line. The PROJECTION line serves to indicate that the overall POS tag for the gloss token

has been assigned to the given POS tag associated with one of its elements, and this tag is

ultimately transferred up to the LANG line.

Projection via this method is not unique to IGT, and has been used in other studies on

projection that focus predominantly on parallel texts, such as Hwa et al. (2004) and Yarowsky

and Ngai (2001). What is unique to using IGT as a data source is how the gloss line is able

to aid in aligning the translation and language lines with a far lower data requirement than

methods that require statistical alignment.

This method does have downsides, though. In Instance 6.2, only those parts of the

gloss that match the translation line are utilized in the projection process, while there is

a far greater amount of text available. Second, as shown in Instance 6.3, sometimes the

translation between the gloss and translation lines are not exact, and so words that might

otherwise be used to project might be skipped.

It is for reasons such as these that I worked to extract more information from the gloss line

in the POS tagging task. Instance 6.4 gives an alternative approach to finding information

for part-of-speech tagging by looking directly at the gloss line itself, shown by the layer

labeled GLOSS-TAGS. The intuition here is that the content on the gloss line is a combination

of English words and grams—elements which specify grammatical features of the word on

the language line. The first word in the Arabic in Instance 6.1, nnisaau, is marked on the

gloss line as the-women(3.PL.F.)-NOM. Aside from the root, women, each of the tokens 3,

http://www.ethnologue.com/language/ita
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nnisaau daxalna makaatibahunna

the-women(3.PL.F.)-NOM entered-3.PL.F office(PL.)-ACC-their(F.)

LANG

GLOSS

(NOUN) (VERB) (NOUN)CLASSIFICATION

DET-NOUN(PER.NUM.GEN.)-CASE VERB-PER.NUM.GENGLOSS-TAGS NOUN(NUM.)-CASE-PRON(GEN.)

their offices.”“The women have enteredTRANS

Instance 6.4: The Arabic (ara) IGT from Instances 6.1 and 6.2, but using a GLOSS-TAGS

layer to label the elements of the GLOSS line directly, and use that information to make a
label choice.

PL , and F indicate inflection for person, number, and gender, while the initial the- appears

to indicate a form of definite marker, with -NOM marking the nominative case. Collectively,

I will refer to both grams and words within a single whitespace delimited token as subwords.

Looking at these subwords, I sought to exploit my intuition that even when the translation

does not align perfectly with the gloss, the gloss can be used as a resource on its own

to gain information on the words in the language line, both independently from, and in

conjunction with, the translation line. I will discuss how I implemented this approach further

Corpus #Tokens #Types Average
Tags

Type

German Instances in XL-IGT 739 321 1.13

NEGRA Corpus 33,133 8,890 1.04

TIGER Corpus 34,093 8,726 1.04

UD-2.0 30,460 7,015 1.05

European Corpus Initiative
Multilingual Corpus

333,882 15,755 N/A

Table 6.1: A comparison of the count of words and unique words in the German data of the
XL-IGT corpus and other German-language corpora, illustrating the sparsity of IGT.

http://www.ethnologue.com/language/ara
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in Section 6.3.

One other concern in the POS tagging task when IGT is used is that of data sparsity, and

particularly, the out-of-vocabulary (OOV) rate. As Table 6.1 shows, the number of German

words covered by IGT data is extremely sparse, with only 321 unique words compared to

the thousands in other German-language corpora. This means that, if the IGT data were

to be used directly to train a POS tagger, it would have to contend with an extremely

high OOV rate. Thus, maximizing the number of words that are tagged in the IGT data is

very important, particularly by expanding the number of POS tags that can be recovered

when alignment cannot be obtained. This concern is also one that the alternative approach

presented in section Section 6.3 seeks to address.

6.2 Projection-Based Tagging

To begin the discussion of my implementation of POS tagging, I will first focus the method

that has been traditionally been used for transferring annotation with bilingual corpora:

POS Tagging Module (§6)

Word
Alignment

Raw IGT

POS Tag 
Projection

(§6.2)

POS-Tagged 
IGT

English
Tagger

Train Gloss-
Line Classifier

(§6.3)

Manual
Gloss-Line Tagging

Gloss-Line Tagged IGT
(Manually Created)

Gloss-Line Tagged IGT 
(via Projection)

Combine
Approaches

(§6.3.5)

Train Monolingual 
POS Tagger

(§6.5)

Figure 6.1: Flowchart of the high-level overview of the POS tagging module, with the pro-
jection pathway highlighted.
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projection-based POS tagging. As shown by Fig. 6.1, this method requires only a set of

raw IGT instances, translation line POS tags, and gloss-to-translation-line word alignment.

Using the conventions from Appendix A, I use F for the language line, E for the translation

line, and PE and PF for the part-of-speech tags for each.

The raw IGT instances may be obtained through Odin, or any of the other IGT-

containing corpora in Chapter 4. The part-of-speech tags to project from the translation line

may be obtained either through manual labelings, such as are available in the RG-IGT cor-

pus; or from an English-language part-of-speech tagger, such as the Stanford Part-of-Speech

Tagger (Toutanova et al., 2003). The third element, the gloss-to-translation line alignment

A, can be any of the methods described in Chapter 5.

Word 
Alignment (§5)

POS System 1:
Projection

Obtain
Alignment (A) Obtain PE

Project PE
to PF

Manual

Tagger

PF  for IGT 

Instance

Manual

Heur –POS

Stat

Heur +POS

Stat +Heur

Translation Lines (E)
Gloss

Language Lines (F)

Raw IGT Instances

Figure 6.2: Flowchart illustrating the pathway from raw IGT to tagged language line (PF )
using IGT projection.
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6.2.1 Projection-Based Tagging Algorithm

The basic mechanism for projecting part-of-speech tags using IGT is illustrated in Fig. 6.2,

and the pseudocode is given in Algorithm 6.2.1. The English POS tagger and gloss/trans

aligner are represented in the pseudocode by the functions engTag(Sentence) and

getAlignedTrans(GlossWord). As IGT instances are encountered, they are separated into

translation and gloss lines (Lines 7 and 9), and the translation line is tagged (Line 8).

Iterating over the gloss words, they are examined for alignment with the translation line

(Line 11) and if an aligned translation word exists, it is assigned the translation word’s tag

(Lines 12 to 14), otherwise it is assigned the unknown ‘UNK’ tag (Lines 15 to 16). Since

gloss and language lines have a word-to-word alignment, the language word is obtained this

way (Line 17). With the language word available, and the gloss word’s projected or ‘UNK’

tag, this (Word, Tag) pair is collected into the tagged language sentence (Line 19) and this

sentence is added to the corpus (Line 20).

6.2.2 Projection-Based Tagging Experiments

Table 6.2 shows the accuracy of the projection algorithm in a number of different settings.

The Alignment Type columns distinguish whether the alignment between translation and

gloss used for the projection was from the heuristic system or manual alignments. The POS

Tag Source columns refer to whether the tags being projected from the translation line are

the manually labeled Gold tags, or the automatically produced Tagger tags.

It is worth noting that, even when gold alignment data is used with gold POS tags,

the projection algorithm achieves an accuracy of 90% overall, while the usage case that

more readily simulates real-world performance on an unknown language—heuristic alignment

and automatic tags—achieves only 66.8% overall accuracy. While these results would still

be promising for a language with no other resources, these figures highlight some of the

weaknesses of the projection algorithm for POS tagging.
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Algorithm 6.2.1: Projection-Based Tagging Algorithm

input : IgtCorpus ; // This corpus is pre-aligned

1 engTag(Sentence)
2 getAlignedTrans(GlossWord)

output : PosTaggedCorpus

3 Function projectTags:
4 Let PosTaggedCorpus be new Corpus;
5 foreach Instance in IgtCorpus do
6 Let TaggedLanguageSentence be new Sentence;

/* Get the translation line from the instance and tag it */

7 TransLine ←− getTrans(Instance) ; // Get the trans line

8 TransTags ←− engTag(TransLine) ; // ...and tag it

9 GlossLine ←− getGloss(Instance) ; // Get the gloss line

10 foreach GlossWord in GlossLine do
11 TransWord ←− getAlignedTrans(GlossWord) ;
12 if GlossWord has an aligned TransWord then

/* If the gloss is aligned, assign the trans tag to it */

13 TransTag ←− getTagFor(TransWord, TransTags) ;
14 GlossTag ←− TransTag;

15 else
/* Else if unaligned, assign the ‘unknown’ tag */

16 GlossTag ←− “UNK′′ ;

17 LangWord ←− wordToWordAlignment(GlossWord) ;
18 LangTag ←− GlossTag;

19 addToSentence
(

TaggedLanguageSentence, (LangWord, LangTag)
)

;

20 addToCorpus(PosTaggedCorpus, TaggedLanguageSentence);

21 return PosTaggedCorpus;
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Projection Algorithm Accuracies

Alignment Type Gold Heuristic

POS Tag Source Gold Tagger Gold Tagger

Bulgarian 90.5 95.2 71.4 76.2
French 90.6 80.2 71.9 63.0
German 90.9 83.9 74.8 69.4
Italian 94.4 88.9 66.7 61.1
Spanish 80.0 69.1 65.5 60.0

Overall 90.0 82.1 72.8 66.8

Table 6.2: POS tagging accuracies for the projection algorithm on the five languages in the
RG-IGT corpus. The table shows results for projection using either gold word alignments
or heuristic alignments, and whether the translation-line POS tags were the gold tags or
generated by the Stanford POS tagger (Toutanova et al., 2003).

6.2.3 Problems with Projection-Based Tagging

As mentioned in Section 6.1, while this method does produce a POS-tagged language line,

it has several major limitations. First, as illustrated in Instance 6.1, when an English trans-

lation word does not share a root with the word or words on the gloss line it is translating,

it may not align, thus leaving the projected tag as ‘UNK’.

A second source for problems is when the English translation shares a root with the gloss,

but the part-of-speech associated with the translation differs from that of the glossed word,

borda kA gaTana kiyA gayA

board of formation do-perf go-perf

The board was formed

Instance 6.5: Example Hindi (hin) IGT where the Hindi gaTana (“formation”) is a NOUN

whereas the English formed is a VERB. The words share the same root, so the VERB tag will
be incorrectly projected to gaTana from the translation line using the heuristic alignment
approach.

http://www.ethnologue.com/language/hin
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such as in Instance 6.5. In this case, in an attempt to find the best match for the word, the

heuristic approach will project a tag from the translation line that does not match the intent

of the word on the gloss line, despite the shared root.

Finally, projecting POS tags has the problem of deciding which of multiple aligned

words decides the tag for a gloss word. As Instance 6.1 shows, the-women(3.PL.F.)-NOM

aligns with both The/DET and women/NOUN, while office(PL.)-ACC-their(F.) aligns with

their/PRON and offices/NOUN . Deciding how to assign which aligned word is problem-

atic. The algorithm solves this problem by using a list of precedence to favor what are likely

content words over potential function words. The list used is:

VERB > NOUN > ADV > ADJ > PRON > DET > ADP > CONJ > PRT > NUM > PUNC > X.

While solution does address the concern, it is rule-based and prone to error.

For reasons such as these, it is attractive to consider a classification-based approach,

where more features can be considered for a given word, and every word is assigned a tag.

6.3 Classification-Based Tagging

An alternative to using a projection-based approach is to use one in which the gloss line

is annotated without requiring alignment with the translation line, and the word-to-word

alignment between the gloss and language lines is used to assign the gloss line decisions to

the language line. In order to accomplish this, I use a classifier that works on each of the

gloss line words. While it would be possible to consider a Hidden Markov Model (HMM)

or Conditional Random Field (CRF) model that is context-sensitive for this approach, if we

treat the gloss lines of IGT as a pseudo-language, this pseudo-language will vary widely in

its ordering between IGT language samples, and so predicating decisions based upon context

that is trained upon this multilingual source may not work well for all languages.

Figure 6.3 shows the high-level overview for this approach. Unlike the projection step,

which can be performed on IGT instances without anything other than off-the-shelf tools,
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POS Tagging Module (§6)

Word
Alignment

Raw IGT

POS Tag 
Projection

(§6.2)

POS-Tagged 
IGT

English
Tagger

Train Gloss-
Line Classifier

(§6.3)

Manual
Gloss-Line Tagging

Gloss-Line Tagged IGT
(Manually Created)

Gloss-Line Tagged IGT 
(via Projection)

Combine
Approaches

(§6.3.5)

Train Monolingual 
POS Tagger

(§6.5)

Figure 6.3: High-level overview of the classifier-based POS tagging approach that functions
directly on the gloss line of an IGT instance.

this classification approach requires a training set of POS tags on the gloss line. While

plenty of annotated data exists to train a POS classifier on English, IGT glosses are instead

an English-like pseudo-language.

6.3.1 IGT Gloss-Line Annotation

Both to serve as a method by which to train the classifier, as well as evaluate it, I created

the RG-IGT corpus mentioned in Section 4.1.3, consisting of 141 instances over 102 separate

documents with manual POS labels on translation, gloss, and language lines. I made an

attempt to sample IGT instances from multiple different Odin source documents, so that

the bias of a focus to only a few specific constructions was avoided. In addition, I spread

the annotation over a number of languages such that annotation pertaining to constructions

unique to different languages might be obtained.

Table 6.3 shows how many tokens and types were annotated for each language on gloss,

language, and translation lines, as well as the average tags per type for each language, also
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Language
Lang

Tokens
Lang
Types

Avg
Tags

Type

Gloss
Tokens

Gloss
Types

Avg
Tags

Type

Trans
Tokens

Trans
Types

Avg
Tags

Type

Bulgarian 20 20 1.00 44 44 1.00 32 25 1.33
French 208 114 1.89 224 132 1.71 84 56 1.53

German 346 221 1.62 365 256 1.46 270 159 1.74
Italian 22 19 1.16 28 27 1.08 18 16 1.13

Spanish 83 75 1.15 69 64 1.08 66 58 1.16

Overall 679 449 1.56 730 523 1.42 470 314 1.53

Table 6.3: Breakdown of all IGT instances in the RG-IGT corpus by token and type.

POS System 2:
Classification

Training

Obtain PG
TagsTranslation Lines (E)

Gloss (G)

Language Lines (F)

Gloss-Tagged IGT Instances

Extract Features

Classifier Trainer

Gloss-Line Classifier 
Model

Training Vectors

Obtain WG
Tokens

Use PG   Tags  
           As  Targets

Figure 6.4: Flowchart illustrating how the classification-based approach works, both in train-
ing the gloss-line classifier and applying it to test IGT instances.

broken down by IGT line. With labels now obtained for 730 gloss tokens, the classifier can

be trained on this data. Figure 6.4 shows a flowchart outlining the training and testing steps

of this approach, and Algorithms 6.3.1 to 6.3.3 give the pseudocode.

6.3.2 Training

After the IGT instances have been annotated, the next steps as shown in Fig. 6.4 are to

extract the features from the annotation and train a classifier for future gloss instances.

Section 6.3.3 will explain the features and feature extraction step in full, but aside from this,

as shown in Algorithm 6.3.1, the training step is rather simple. Line 2 instantiates a new
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Algorithm 6.3.1: Classification-Based Tagging Algorithm: Training Phase
input : GlossAnnotatedIgtCorpus

ClassifierTrainer
runTrainer(Trainer, FeatureVectorCollection)
getFeatures(Word)
addTrainingInstance(FeatureVector, Target, FeatureVectorCollection)

output : ClassifierModel

1 Function trainGlossClassifier:
2 Let GlossTrainingVectors be new FeatureVectorCollection;
3 foreach Instance in GlossAnnotatedIgtCorpus do
4 AnnotatedGlossLine ←− getGloss(Instance);
5 foreach GlossWord, GoldGlossTag in AnnotatedGlossLine do
6 InstanceVector ←− getFeatures(GlossWord, Instance, EnglishDictionary);
7 addTrainingInstance(InstanceVector, GoldGlossTag, GlossTrainingVectors);

8 Let GlossClassifierModel ←− runTrainer(ClassifierTrainer,GlossTrainingVectors);
9 return GlossClassifierModel;

Algorithm 6.3.2: Classification-Based Tagging Algorithm: Feature Extraction
input : GlossWord

IgtInstance
EnglishDictionary

output : FeatureVector
1 Function getFeatures:
2 Let FeatureVector ←− be new FeatureVector ;
3 Alignment←− getAlignment(IgtInstance);
4 foreach featureFunction() in ActiveFeatures do

/* Args are optional arguments, e.g. Alignment and EnglishDictionary */

5 featureV alue ←− featureFunction(GlossWord, . . . Args) addToVector(FeatureVector,
featureValue)

6 return FeatureVector
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collection of training vectors to feed to the classifier trainer. In my experiments I used a

MaxEnt classifier, but any classifier may be used. Lines 3 to 4 iterate over all the instances

and extract the gloss line, while Lines 5 to 7 iterate over the gloss tokens on the gloss line

and add feature vector extracted from each token to the training vectors. Finally, Lines 8

to 9 use the classifier trainer to train a model from the input vectors, and return the trained

model.

6.3.3 Features

In order to train a classifier, features must be extracted for the training instances. Table 6.4

contains a full list of features used in the classifier. Most features take only the current

gloss Word as an argument, but alignedTag takes an Alignment between the gloss line

and translation line, and a set of TranslationTags for the POS tags on the translation line.

Algorithm 6.3.2 shows the pseudocode for how features are extracted at both training time

and testing time.

While some features can be extremely reliable, others are not particularly helpful. In order

to understand what features help the classifier the most, I conducted a test by enabling each

of the features in Table 6.4 individually and in combinations, the results of which can be

seen in Table 6.5.

In this test, each feature was used in isolation to train the classifier, except where combi-

nations of features are indicated. For comparison, the performance of the projection method

across the entire dataset is provided, as is the result of assigning the most frequent tag

(NOUN).

The subWords feature alone was quite successful, achieving a 79.5% accuracy by itself.

Interestingly, the prefix feature achieved a higher performance, at 83.6%. The projection-

based alignedTag feature also performed rather well, though as gold tags are not available

for all translation lines, the feature fired far less frequently when using gold tags, and thus
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subWords(Word)
Simply return, as features, each subword contained in the word.
Example: ‘Woman.3sg.FEM’ → {‘Woman’, ‘3sg’, ‘FEM’}

alignedTag(Word,Alignment, TranslationTags)
Given the current word, and it’s alignment with the translation line, return the POS tag of the
word(s) with which it is aligned. This feature also must be provided with an alignment to the
translation line and POS tags for the translation.
Example: the-women(3.PL.F.)-NOM

“The/DET women/NOUN

GLOSS

TRANS
‘the-women(3.PL.F.)-NOM’ → { ‘DET’, ‘NOUN’ }

wordHasNumber(Word)
Return 1 if there is a number somewhere in the word, 0 otherwise.
Example: ‘3sg.FEM’ → 1; ‘dog.NOM’ → 0

suffix(Word)
Return up to the last three characters of the word.
Example: ‘leading’ → {‘ing’, ‘ng’, ‘g’}.

prefix(Word)
Similar to suffix, return up to the first three characters of the word.
Example: ‘disavow’ → {‘d’, ‘di’, ‘dis’}.

numSubwords(Word)
Return an integer value of the number of subwords contained in the word.
Example: ‘Women.3sg.FEM.PL’ → 4

prevSubwords(Word)
Return, the subwords contained in the preceding word. The same as calling
subWords(PrevWord)

Example:
{

PREV: ‘3sg.FEM’ --- CURRENT: ‘dog.NOM’
}
→ {‘3sg’, ‘FEM’}

nextSubwords(Word)
Return the subwords contained in the following word. The same as calling subWords(NextWord)

Example:
{

CURRENT: ‘3sg.FEM’ --- NEXT: ‘dog.NOM’
}
→ {‘dog’, ‘NOM’}

dictTag(Word, Dict)
Using a dictionary generated by scanning the words in the Penn Treebank, return the most
common POS tag for each subword found in the dictionary, if it is found. (In this example, no
tag is found for PL).
Example: ‘the.women.PL’ → {‘DET’, ‘NOM’}

prevDictTag(Word, Dict)
Same as dictTag, but for the previous word.

Example:
{

PREV: ‘woman.3sg.FEM’ --- CURRENT: ‘went.PRES’
}
→ {‘NOUN’}

nextDictTag(Word, Dict)
Same as dictTag, but for the following word.

Example:
{

CURRENT: ‘woman.3sg.FEM’ --- NEXT: ‘went.PRES’
}
→ {‘VERB’}

Table 6.4: List of features used in the classifier. While most features simply take a Word as
an argument, the alignedTag feature takes an additional Alignment and TranslationTags,
and the dictTag takes an additional Dict argument.
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Feature or Ensemble Train Test

Baselines
Most Common Tag (NOUN) 27.9% 26.9%
Projection(H,A) 75.1%

Basic Features
subWords 86.3% 79.5%

numSubwords 31.2% 31.5%

wordHasNumber 31.5% 38.4%

Alignment

alignedTag(H,A) 78.5% 82.2%
alignedTag(H,G) 60.3% 63.0%
alignedTag(G,A) 84.5% 89.0%
alignedTag(G,G) 64.4% 67.1%

Affixes
suffix 84.0% 65.8%
prefix 88.7% 83.6%
suffix + prefix 96.7% 80.8%

Context

prevSubWords 60.9% 47.9%

nextSubwords 66.1% 37.0%
prevSubwords + nextSubwords 84.2% 60.3%

Dictionary

prevDictTag 42.8% 47.9%
nextDictTag 40.5% 46.6%
dictTag 85.8% 89.0%
prevDictTag + nextDictTag 53.4% 56.2%
prevDictTag + nextDictTag + dictTag 88.6% 89.0%

Best System

subWords + alignedTag(H,A) + suffix + prefix +

prevSubwords + nextSubwords + prevDictTag +

nextDictTag + dictTag

99.8% 94.5%

Table 6.5: Feature tests for features listed in Section 6.3.3 on RG-IGT corpus. The perfor-
mance on a training set and test set are given using a 90/10% split. For the alignedTag

feature, the arguments provided show the (AlignmentType, TagType) provided to the func-
tion, where ‘H’ and ‘G’ represent Heuristic alignment and Gold alignment respectively,
while ‘A’ and ‘G’ likewise represent Automatically labeled tags, and Gold tags.



86

suffered a performance hit.

The dictTag feature also performed extremely well, showing the helpfulness of the

English-language words on the gloss line, similar to the alignedTag feature when using

gold alignments and automatic tags.

Finally, the Best system, chosen by testing all feature combinations and choosing the

highest performing, consists of a large ensemble of features to achieve an extremely high

accuracy of 94.5%, a 78% error reduction over the projection method, and a 73% reduction

over using the basic features alone.

6.3.4 Running the Classifier on New Instances

Now, having trained a classifier capable of labeling gloss-line instances with their POS labels,

the classifier can be run upon previously unannotated IGT instances as shown in Fig. 6.5,

and implemented in Algorithm 6.3.3. In the algorithm, Line 7 uses the same getFeatures

function that was described previously to extract features, and Line 8 uses the classifier

produced in the training phase to produce the POS label for the current gloss word. Finally,

the word-to-word alignment is again utilized in Line 10 to assign this label to the language

word.

6.4 Combining Projection and Classification

While the creation of the RG-IGT corpus was originally intended to serve as a small set

of labeled instances for both training and evaluation of the gloss-line classifier, there is an

alternative method of obtaining the gloss-line POS tags for training, and that is by using

projection over the entire Odin corpus. Figure 6.6 shows this revised training step.

Although the projection-based approach leaves many gaps when words are not aligned,

and thus has low overall accuracy for POS tagging, the classifier approach does not require

complete sequences, but can instead use only the tokens for which projection is successful.
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Algorithm 6.3.3: Classification-Based Tagging Algorithm: Testing Phase
input : GlossClassifierModel

IgtCorpus
EnglishDictionary
classifyWord(FeatureVector, Model)

output : PosTaggedCorpus

1 Function testPosClassifier:
2 Let PosTaggedCorpus be new Corpus;
3 foreach Instance in IgtCorpus do
4 Let TaggedLanguageSentence be new Sentence;
5 GlossLine ←− getGloss(Instance);
6 foreach GlossWord in GlossLine do
7 Features ←− getFeatures(GlossWord);
8 GlossTag ←− classifyWord(Features, ClassifierModel);
9 LangTag ←− GlossTag

10 LangWord ←− wordToWordAlignment(GlossWord, Instance, EnglishDictionary);
11 addToSentence(TaggedLanguageSentence, (LangWord, LangTag));

12 addToCorpus(PosTaggedCorpus, TaggedLanguageSentence);

13 return PosTaggedCorpus;

POS System 2:
Classification

Testing

Obtain WG
TokensTranslation Lines (E)

Gloss (G)

Language Lines (F)

Raw IGT Instances

Extract Features

Gloss-Line Classifier 
Model

PG  for IGT 

Instance

Test Vectors

PF  for IGT 

Instance
1-to-1

Gloss/Lang
Alignment

Figure 6.5: Flowchart illustrating the testing step of the classification-based tagging ap-
proach.
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Word
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Raw IGT

POS Tag 
Projection
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POS-Tagged 
IGT

English
Tagger

Train Gloss-
Line Classifier

(§6.3)

Manual
Gloss-Line Tagging

Gloss-Line Tagged IGT
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Gloss-Line Tagged IGT 
(via Projection)

Combine
Approaches

(§6.3.5)

Train Monolingual 
POS Tagger

(§6.5)

Figure 6.6: Flowchart of classification-based POS tagging training step using projected labels
in place of gold-standard labels (Fig. 6.4).

Using this approach would thus potentially expand the number of training instances from

the 432 tokens in the RG-IGT corpus to the 231,602 in the Odin corpus, though with the

potential of introducing noise of various types mentioned in Section 4.4.

6.4.1 Results on IGT Data

Figure 6.7 shows the results of the classification approach either using training data from

90/10% splits and 10-fold validation using the RG-IGT corpus (labeled “Manual”), or using

projected POS tags from the full Odin corpus (labeled “ODIN”).

As the figure shows, the “Manual” system, despite having many fewer training instances,

performs better on the test data than does the “ODIN” system. Given that the set of training

data is very close to the test data, covering the same languages and being likely biased by

use of the similar set of subwords, this result is not particularly surprising, and should

not be given too much weight. While both classifier-based approaches show substantial

improvement over the projection method, the amount of evaluation data available in these
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Figure 6.7: POS tag accuracies of the projection-based and classifier-based approaches, using
the RG-IGT corpus for evaluation. The classifier built using the manually-created RG-IGT
corpus is labeled “Manual” and the classifier built using automatically projected POS tags
over the entire Odin corpus is labeled “ODIN.”

experiments is limited. The following sections Section 6.5 and Section 6.6 will discuss POS

tagging experiments on a more varied set of evaluation data.

6.5 A Case study in Projection Methods:
Part-of-Speech Tagging Chintang

While testing on the languages in the RG-IGT corpus provided some amount of diversity in

the languages being tested, all the languages still belonged to the Indo-European language

family, and so I also sought to perform part-of-speech tagging on a non-Indo-European lan-

guage for which a very clean collection of IGT data was available, namely, the Chintang

(ctn) corpus (Bickel et al., 2009)1. Chintang was a good candidate to study, because in

addition to being an endangered language without traditional computational resources, no

language-specific data had been created for this language for any of the POS tagging ap-

proaches thus far. For these reasons, running the POS tagging experiments on Chintang

1My work on this corpus was previously published as Georgi et al. (2015)

http://www.ethnologue.com/language/ctn
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Method Accuracy % Unaligned

Basic Mapping 12.6 83.8
Extended Mapping 39.6 57.1

Table 6.6: POS tag accuracies for the projection-only approach on Chintang data.

would represent a proof-of-concept for other resource-poor languages.

As shown in Section 4.1.6, the Chintang IGT data from Bickel et al. (2009) consisted of

8,695 IGT instances, converted into the Xigt-XML format (Goodman et al., 2014), for use in

Bender et al. (2014). Experiments included running POS tagging, both via projection and

classification approaches. Gold-standard POS tags come from the Chintang corpus itself,

though with mappings as will be discussed in Section 6.5.2.

6.5.1 Projection-Based Tagging

POS tagging experiments were first attempted using the projection-based methods from

Section 6.2, but as shown in Table 6.6 shows, an initial 12.6% POS tagging accuracy quickly

suggested an issue with the data.

Looking more closely at the Chintang data, as Table 6.6 shows, a great deal more gloss-

line tokens were unaligned than was typical for IGT data. The reason for this unusual

amount of unaligned instances was due to the particular conventions of the Chintang data

where the overlap between words used in the gloss line and the words used in the translation

hun-ko-i tis-u-m pache

DEM-NMLZ-LOC put.into-3P-1/2nsASEQ

(pro ) (vt ) (gm )

after putting dal or arum

Instance 6.6: An instance from the Chintang (ctn) development set, showing the lack of
alignment between gloss line and translation line, as well as the gold standard POS tags.

http://www.ethnologue.com/language/ctn
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line were far fewer, and some gloss tokens consisted only of grammatical features. This lack

of overlap is illustrated in Instance 6.6. In this particular instance, only the gloss ‘put’ has

a matching segment on the translation line, ‘putting’. Most of the rest of the gloss-line

tokens provide grammatical information, such as ‘DEM’ (demonstrative).

This lack of overlap is crucial, since when words are unaligned, projection cannot hap-

pen. Thus, 83.8% unaligned tokens means an upper bound on accuracy of 16.2%, using the

alignment heuristics developed in Section 5.2.

6.5.2 Subword Mapping

The tag gm in the Chintang data set refers to grammatical markers. It seems that while

some words tagged gm do not have counterparts in English (e.g., a TOPIC marker), others

are listed as the English words and, or, or but.

In order to see if projection accuracy could be improved, I attempted to map the top

twelve frequently seen subwords in the gloss line that had been labeled with the ‘gm’ POS

tag. Table 6.7 gives the list and frequencies of these twelve gloss tokens, which show that

BUT and and were labeled as ‘gm’ in the gold standard—words that would be labeled

as ‘CONJ’ in projection, if they were seen on the translation line. As shown in Table 6.6,

this mapping dropped the number of tokens that were unable to receive tags from 83.8% to

Gloss Word # Tokens Tag # Tokens

FOC 1049 CIT 360
TOP 1027 REP 243
SEQ 855 and 237
ADD 621 SURP 236
EMPH 504 SPEC.TOP 223
BUT 365 COND 207

Table 6.7: Top twelve gloss tokens labeled gm in the CTN corpus sorted by decreasing
frequency.
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57.1%, and raised the tagging accuracy from 12.6% to 39.6%.

For classification, these ‘gm’ tags are added to the existing dictionary of Penn Treebank

word-tag pairs used for the dictTag feature described in Table 6.4. This expanded dictionary

would now contain CTN-specific (gloss-token, tag) pairs in addition to the high-frequency

tags for other English words contained by the gloss-line token. This dictionary is then used

to provide the best-guess tag feature to the classifier at training and test time.

6.5.3 Classification-Based Tagging

In the next set of experiments, the classifier was run using four different settings regarding

the training data for the classifier. The classifier first used was the classifier produced on the

full Odin corpus, using projected tags, as described in Section 6.4. No instances from the

Chintang corpus were used for training the classifier in this approach.

For the second classification based approach, I trained the classifier with the training

portion of the Chintang corpus, ignoring the gold-standard POS labels and instead using

projected POS tags, as was the case in the first scenario. The intention of this experiment

was to see what improvement using instances specific to Chintang might have, since many of

the gloss line tokens in the Chintang corpus were rarely, if ever, seen in much of the original

Odin database. Additionally, since all the instances used to train the classifier were coming

from the same language and being sensitive to word order might be beneficial, I used this

experimental setting to test whether adding context features, such as the prevSubwords and

nextSubwords, would improve performance.

The third approach combined the Odin and Chintang training data. This setting was

designed to test how the addition of the Chintang instances would affect a model trained

primarily on instances from other languages. The fourth approach used the training portion

of the CTN data, this time utilizing gold-standard POS tags rather than projected tags.

Two additional parameters were included for the training procedure; the adding of the
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Training Data Expanded Dictionary Context Features Accuracy

ODIN
43.1

X 53.0

CTN

75.0
X 74.9

X 74.8
X X 74.9

CTN+ODIN
61.6

X 70.7
X X 72.6

Supervised (with
Labeled CTN)

89.6
X 90.6
X X 90.1

Table 6.8: POS tag accuracies for classification-based method on CTN test data comparing
different sets of training data and classifier features. The “Expanded Dictionary” refers to
adding the gm tokens from Table 6.7 to the dictTag lookup dictionary. “Context Features”
are the features labeled “Context” in Section 6.3.3.

twelve most frequent ‘gm’ labeled tokens from Table 6.7 to the dictionary used by the

dictTag feature described in Table 6.4, labeled in the results in Table 6.8 as “Expanded

Dictionary,” and the inclusion of contextual features, due to the target of this particular

training being focused upon a single language, rather than the large variety of languages the

classifier is typically intended to cover.

The results of the classification experiments are shown in Table 6.8, where the ODIN-

trained classifier shows a poor performance of 43.1% with the standard settings–better than

the 39.6% displayed by the projection-based approach, even with remapping, but still far

short of the 94.5% demonstrated on the RG-IGT data by the feature ablation test in Ta-

ble 6.5. Adding the twelve ‘gm’ tagged tokens to the expanded dictionary improved perfor-

mance an absolute ten percent, but this result was still far lower hoped for.

Training instead on the CTN data with projected POS tags improved the classification
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drastically, reaching up to 75%. Adding the expanded dictionary and contextual features

appeared to have no significant effect, possibly because the amount of training data available

was so high already.

The combination of Chintang data and Odin training data resulted in a tagging accuracy

of 61.6%. This decrease in performance is expected given that the classifier model that

results is less targeted toward this specific data. Adding the expanded dictionary again has

a substantive effect, improving accuracy from 61.6% to 70.7%, and the contextual features

generated from using the Chintang training data do help compensate further, bringing the

accuracy for this set of data up to 72.6%. Finally, using the gold-standard POS tags from

the Chintang data show an 89.6%–90.6% range, with the additional features again showing

little effect.

6.5.4 Varying the Amount of Data

Finally, I also wanted to see what performance one might expect to see with various amounts

of available IGT training data. Figure 6.8 shows the result of this experiment, comparing

the classifier over a range of training data sizes, from only 50 tokens to nearly 32,000 tokens.

In the graph, we see that the classifier using the expanded dictionary achieves almost

75% accuracy with approximately 400 tokens, coming very close to the supervised approach

at around 77%. With an increased amount of data, the unsupervised methods converge

at 75%, and the supervised method approaches 90%. While the supervised method clearly

outperforms the projection-based methods, the fact that the classifier-based method, without

context features, can achieve 75% with fewer than 500 tokens is more representative of the

typical amount of IGT data available for a language, and so is a very promising result.
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Figure 6.8: Graph showing the result of using the classifier-based tagging approach on CTN
test data using varying amounts of training data. The legend refers to the different feature
combinations used to train the classifier.

6.5.5 Analysis

While using the Chintang data was crucial for examining how the classification-based POS

tagging approach performed on an endangered language, evaluation was difficult due to a

combination of gloss-line conventions and the tags used in the gold standard. Without more

knowledge of the specifics of Chintang, it is hard to determine whether the issues encountered

mapping the gold standard tagset to the universal POS tags are merely an issue of design

choices, or a more fundamental typological difference that the universal tagset is unable to

account for.
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6.6 Extending to Monolingual Corpora

While the results shown in Section 6.4.1 and Sections 6.4 and 6.5 are interesting, they are

also systems that rely on IGT input data. Instead of requiring input to be IGT data, the

POS-tagged IGT data could be used as training data for a monolingual POS tagger, which

would result in a system able to be more widely used for the target language. The last set

of POS tagging experiments I describe were done in order to achieve this goal.

6.6.1 Training Monolingual POS Taggers

In order to create monolingual POS taggers, I experimented with both methods of trans-

ferring tags to the language line described in the preceding section; either projection from

translation to gloss, or classification of the gloss line, then subsequent 1-to-1 projection from

the gloss line to language line.

Once a POS-tagged language line has been acquired, the resulting sentence can be used as

a training instance for a standard sequence-labeling POS tagger, since we might assume that

the contextual information assumed by traditional sequence labelers is more helpful when

dealing with a single language, than the gloss line which can represent multiple languages.

For my experiments, I used the Stanford Tagger (Toutanova et al., 2003).

The flowchart in Fig. 6.9 gives a high-level overview of how the POS tagger is trained,

using either of these approaches.

6.6.2 Evaluating The Monolingual Taggers

In order to evaluate the new, monolingual POS taggers, I use the test sections of the Universal

Dependency Treebank, v2.0 corpus (UD-2.0) (Agić et al., 2015), as it provides gold-standard

POS in a variety of different languages, all using the universal tagset from Petrov et al. (2012).

The English language POS tagger used for tagging the translation lines was also trained

on the WSJ corpus using POS tags mapped to the universal set. Finally, as Section 4.2
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Figure 6.9: Flowchart depicting the process for training the monolingual POS tagger, using
either the projection based approach from Section 6.2 or the classifier-based approach from
Section 6.3.
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mentions, one of the constraints chosen to limit the scope of this work was attempting to

avoid complications due to transliteration of orthography, so although the UD-2.0 corpus

provides data for Japanese and Korean, these languages were not used for these POS tagging

experiments.

The languages chosen for evaluation were: French, German, Italian, Spanish, Indonesian,

and Swedish. It is worth noting that although no language-specific information was used

in creating the classifier for POS tagging the gloss line, IGT instances from the first four

languages were found among those which had their gloss lines annotated in the RG-IGT

corpus. The last two languages, Indonesian and Swedish, did not.

6.6.3 Results

Figure 6.10 and Table 6.9 show the results for these monolingual results, comparing between

monolingual POS taggers created with IGT language lines created via projection or classifier

methods, and POS taggers created with data from the training sections of the UD-2.0.

As the results from the RG-IGT (Section 6.4.1) and Chintang experiments (Section 6.5.5)

suggested, the classification-based approach outperforms projection in almost all of the tested

languages. Two settings for projection were attempted in the data, one labeled Projection:

Partial, where IGT instances were used regardless of whether all words in the instance were

aligned or not. The other setting, labeled Projection: Full only used IGT instances for

which all tokens in the instance were aligned with the translation line and received a label.

This Full setting drastically improves monolingual tagging performance for all languages

except Indonesian.

Among the classification-based approaches, the classifier trained on a small amount of

manually labeled gloss-line tokens (Classifier: Manual) performed better in most cases

than the classifier trained on a much larger set of projected labels (Classifier: ODIN).

German and Swedish were the exception, with the Odin classifier outperforming the manual
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Language
Projection:

Partial
Projection:

Full
Classifier:

ODIN
Classifier:
Manual

Supervised:
1K Tokens

Supervised:
All Tokens

French 50.8 61.9 67.4 70.6 79.3 95.8
German 67.8 70.1 73.7 72.6 70.5 92.6
Italian 55.0 59.1 63.4 66.6 73.5 96.2
Spanish 61.6 68.8 70.4 73.2 80.2 95.9

Indonesian 61.5 59.7 66.2 70.9 80.7 93.9
Portuguese 52.5 65.5 60.8 65.8 78.5 96.0
Swedish 47.0 50.1 55.1 53.5 67.3 93.8

Overall 56.3 63.4 66.3 69.2 77.7 95.4

(a) Tagging accuracies for all sentences in the UD-2.0 test data.

Language
Projection:

Partial
Projection:

Full
Classifier:

ODIN
Classifier:
Manual

Supervised:
1K Tokens

Supervised:
All Tokens

French 62.3 69.9 74.1 75.8 76.8 96.4
German 68.5 66.8 75.0 72.8 74.0 92.6
Italian 65.1 65.6 69.6 72.3 69.6 95.3
Spanish 64.7 65.3 70.2 73.4 78.2 95.8

Indonesian 63.8 63.3 66.7 70.1 79.4 90.9
Portuguese 56.7 66.7 64.1 65.7 75.9 94.1
Swedish 55.6 57.5 61.5 60.3 69.1 93.1

Overall 62.7 65.5 69.5 70.4 74.9 94.1

(b) Tagging accuracies for sentences in the UD-2.0 test data with length of ten words or fewer.

Table 6.9: POS tagging accuracies for monolingual taggers trained on IGT language lines
and tested on on UD-2.0 test data (McDonald et al., 2013). While no tagger involved
annotation that was specific to a particular language, the first four languages were languages
for which some IGT instances had been annotated on the gloss line for the classifier labeled
‘Manual.’ Neither Indonesian, Portuguese, nor Swedish were among the languages with
gloss-line annotations, and no manual labeling was done for the ‘ODIN’ classifier.
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classifier by a percentage point. Overall, however, the Manual classifier achieved 69% tagging

accuracy, to the Odin classifier’s 66%.

Shown in the results are two supervised systems, using a varying amount of training data.

In the first system, labeled “1K Tokens,” only the first 1,000 tokens of the training data were

used. In the second system, all available training sentences were used. Given that 1,000

tokens is a far more realistic amount of data to be available for a resource-poor language

IGT, these scores are given to provide more of a real-world comparison than the “All Tokens”

systems, which are fully supervised with tens or hundreds of thousands of available tokens.

While this 1K token system generally outperforms the IGT-based methods by a substantial
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UD-2.0 test data.
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margin, in German, the classifier-based approaches manage to beat the German 1K approach

by 2-3 percentage points.

Another setting seeks to address the shift in domain that the UD-2.0 data set represents.

The average length of a sentence in the UD-2.0 corpus is 21.8 words, while the average length

of IGT in Odin is 4.78 words. Furthermore, the domain of the UD corpus is more along

the lines of newswire articles than the extremely simple instances found in IGT. In order to

compare differences in sentence length, I ran a second set of experiments shown in Table 6.9b

where the systems were evaluated only on sentences in the UD-2.0 test data that consisted

of ten words or fewer. On this set of test data, all IGT-based methods perform better, while

the supervised approaches perform worse, but the trend shown for evaluation on all sentence

lengths (Table 6.9a) stays the same.

We see in these results that, although the supervised systems do still regularly outperform

the IGT-based systems, given that such supervised data will not be available for the typical

resource-poor language, the IGT-based systems do appear to perform decently at the task.

6.7 Future Work

While the experiments performed here give a foundation for the ways in which IGT data

may be used as a source for POS tagging resource-poor languages, there some paths that

would be interesting to pursue further.

6.7.1 Incorporating Classification Probabilities

Given that the classification approach I outline uses a MaxEnt classifier, which can output a

top-n list of the potential POS tags and their probabilities, this is information that could be

exposed to a downstream tagger, which could incorporate this ambiguity with the contextual

information from the target language to produce higher-quality tagging on the monolingual

task.
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6.7.2 POS Induction

In the case where the amount of supervised information available for a language is limited,

but a good deal of unsupervised information is available, it is possible that the POS tagging

task might instead be cast as a semi-supervised POS induction task.

The prototyping approach of Haghighi and Klein (2006b) is one which would ideally

hold promise for this setting. In this work, the authors take the approach of taking a

typically unsupervised approach on monolingual data, and use “prototypes” as constraints

on a Markov random field model that allows for the observed monolingual data to guide

the induction process, while guiding the algorithm toward a solution that includes the pre-

defined prototypes. While I performed some preliminary experiments along these lines, I was

unable to replicate the published results, and it seemed that the choosing of the prototypes

may require a deal more work.
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Chapter 7

DEPENDENCY STRUCTURES

The previous chapters have discussed word alignment and POS tagging, and the problems

presented when using IGT as a data source. In particular, the previous tasks face the issues

of (1) noisy data and (2) sparse data. For the task of dependency parsing, the target to

be learned moves from the shallower task of word alignment and POS tagging to more

complex linguistic analysis. While POS tags may differ between languages, if we treat this

correspondence as a statistical likelihood, the relationship between two aligned words is

even less likely to hold. Thus, dependency structures that contain many such relationships

between words are an even harder target for bootstrapping than previously discussed tasks.

To get a full picture of the dependency parsing task, I will present it in five parts. First,

Section 7.1 will give a brief introduction to dependency structures. Second, Section 7.2

will discuss the fundamental task of projecting dependency structures using the projection

algorithm alone, using different alignment methods. Next, Section 7.3 will discuss how

projected parses were used in combination with a modified dependency parser to see if

improvements could be made over projection alone.1 Section 7.4 will discuss measuring

the divergence between languages by means of the dependency structures, and how these

patterns might be learned and applied to the output of a parser.2 Finally, Section 7.5 will

talk about training a monolingual dependency parser for use in the monolingual parsing task.

1Previously published as Georgi et al. (2012)

2Previously published as Georgi et al. (2014)
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The teacher gave a book to the boy yesterday

Rhoddod yr athro lyfr i'r bachgen ddoeWelsh:

English:
(a) Parallel Welsh-English sentence pair.

gave

teacher

the

book

a

to

boy

the

yesterday

(b) Dependency structure representa-
tion of the English sentence.

Figure 7.1: Example of a Welsh–English sentence pair, and English dependency structure,
represented as a DAG in tree form.

7.1 Introduction

Dependency structures (DSs) are used to describe individual sentences not as constituents,

but rather a set of head–dependent pairs, where the pairings describe a minimal relationship

between words, such as an adjective and a noun. This concept was introduced to the field of

modern linguistics in Tesnière (1959), and further supported by Hays (1964), who introduced

the possibility of using such a formalism in machine translation. An example sentence and

its DS representation is shown in Fig. 7.1.

The primary advantage of DSs over constituent-based models is that, as mentioned by

Hays (1964), in a multilingual setting, the more basic relations between head/dependent

as represented in a dependency structure are more likely to be retained between languages

than the complex interior and language-specific structures present in a constituent-based
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tree. It is for this reason that I choose to focus the syntactic elements of this work upon

DS representations, for which a literature base exists to compare against, particularly with

regard to other projection methods.

In this chapter, I will present five different DS parsing systems. Section 7.2 will describe

System 1, a projection-only system which functions on IGT data. Section 7.3 will discuss

Systems 2 and 3, which are ways by which a modified dependency parser can use projected

edges as a feature, potentially correcting for unreliable projections. Section 7.4 will describe

System 4, in which by comparing manually corrected DSs between the target language and

the English projection source DSs, divergence patterns may be detected and corrected for.

Finally, Section 7.5 describes System 5, which uses IGT to extract training data in the form

of POS tags and projected DS structures, then train a dependency parser directly on the

IGT-extracted data for running on monolingual data in the target language.

7.2 Projecting Dependency Structures

I start with the most straightforward method of obtaining dependency structures for a given

language for which IGT data is available: use the IGT itself to obtain the structures. This

method is essentially the same as standard bitext DS projection methods such as that

implemented by Hwa et al. (2004), with the exception that IGT data allows for different

alignment methods, as discussed in Chapter 5.

Figure 7.2a shows the English DS from Fig. 7.1, along with the word alignments to the

Welsh sentence from Fig. 2.1. The projection method used follows Quirk et al. (2005) and

Xia and Lewis (2007). To start, the system parses the translation line of the IGT, E, into

a dependency tree, TE, and aligns the nodes with the words in the language line, F . For

each translation-line node ei that aligns with a language-line word fi, that node is replaced

with the language-line word. If a single translation node ei aligns with multiple language-

line words (fi, fj), I make multiple copies of ei as siblings in the tree for each language-line
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gave

teacher

the

book

a

to

boy

the

yesterday

Rhoddod yr athro lyfr i'r bachgen ddoe

(a) Using the English DS and the word alignment from Fig. 7.1, the next step is to project the
structure via the alignments.

Rhoddodd

athro lyfr i’r ddoe

bachgen

i’r

yr

(b) Replacing the words in the English DS with those from the Welsh in Fig. 7.2a results in the
tree above. Note that due to the Welsh word i’r being aligned with the English words to and the,
it occurs twice.

Rhoddodd

athro lyfr i’r ddoe

bachgenyr

(c) For target words that were aligned to multiple source words, all but the shallowest are removed.

Figure 7.2: Illustration of the projection of dependency structures using the aligned English–
Welsh sentence and the English DS from Fig. 7.1, following Xia and Lewis (2007).
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word, then replace the translation-line words with those from the language line. If multiple

translation nodes align to a single language-line word, the node highest up in the tree is

kept, and all others removed. Finally, remaining unaligned words are reattached using the

following heuristic: for the indices i < j < k, where j is the unaligned word’s order in the

sentence, and i and k are the closest aligned words to the left and right, respectively, j is

attached to the lower of i or k if one is descended from the other. That is, if k is a dependent

child of i, then j will attach to k. If there are no aligned words i to the left of j, j is

attached to the leftmost word that is aligned, and vice versa for k. The full pseudocode for

this algorithm as implemented here can be found in Appendix B.1 as Algorithm B.1.1.

This method has the obvious advantage of being available for any language that is avail-

able in Odin, as it produces the dependency structures from the IGT instances themselves.

The downside of this method is that it does not directly produce a model which can process

non-IGT data; I will discuss how that may be done in Section 7.5.

Figure 7.3 illustrates the way in which the DSs are produced. In creating the dependency

structures, I looked at five ways to obtain the alignment: two variants of the heuristic method

(Section 5.2), two variants of the statistical G-T alignment methods (Section 5.3), and the

gold-standard alignments themselves. Additionally, I look at two ways of obtaining trees

for the translation-line: the manually-produced gold standard trees, and those produced by

using a parser.

The first four systems, including the projection-only system described here will be eval-

uated against the gold-standard dependency structures in the XL-IGT and HUTP corpora

described in Chapter 4. The evaluation metric will be Unlabeled Attachment Score (UAS)

which was chosen over Labeled Attachment Score (LAS) to focus the content of the exper-

iments on the projected structure, rather than the complex semantics involved in labeled

dependencies, which may map poorly between languages.

Figure 7.4 shows an overview of the UAS results for the projection-only methods across
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Using Manual English DSs

Language Stat
Stat

+Heur
Heur
−POS

Heur
+POS Manual

Gaelic 74.6 74.6 75.0 79.8 81.8
German 74.0 74.0 66.7 74.6 88.2
Hindi 59.9 60.0 49.0 57.3 62.8
Hausa 68.1 68.1 51.3 59.1 79.5
Korean 80.9 80.9 67.3 77.8 88.1
Malagasy 81.2 81.2 72.8 77.7 88.8
Welsh 79.2 79.2 73.1 78.2 88.1
Yaqui 76.1 76.6 56.9 82.0 85.8

Overall 72.6 72.6 61.9 71.2 81.0

(a) UAS for Projected DSs, using the gold standard DSs as the
source.

Using Parser-Produced English DSs

Language Stat
Stat

+Heur
Heur
−POS

Heur
+POS Manual

Gaelic 61.5 61.5 66.3 69.1 65.5
German 66.9 66.9 59.5 66.6 75.4
Hindi 54.5 54.4 46.8 55.3 57.9
Hausa 57.5 57.5 47.6 53.3 61.2
Korean 75.8 75.8 63.7 73.7 83.2
Malagasy 69.3 69.3 63.0 67.5 73.2
Welsh 70.5 70.5 65.4 70.2 73.4
Yaqui 59.9 59.9 42.6 67.3 67.1

Overall 63.8 63.7 55.5 64.1 69.1

(b) UAS for projected DSs, using the Stanford Parser (de Marn-
effe and MacCartney, 2006) to produce the source DSs.

Table 7.1: Unlabeled Attachment Score (UAS) for projected dependency structures in the
XL-IGT and Hindi datasets, showing various alignment methods and using either gold stan-
dard trees or parser-generated English trees as the projection sources.
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System 1: Projection

Obtain
Alignment (A) Obtain TE

Project TE
to TF

Manual

Parser

TF  for IGT 

Instance

Manual

Heur –POS

Stat

Heur +POS

Stat+Heur

Translation Lines (E)
Gloss

Language Lines (F)

IGT Instances

Figure 7.3: Flowchart illustrating the different options that can be used to create DSs via
projection. There are five alignment methods, more detailed descriptions of which may be
found in Chapter 5, and two options for the translation-line trees. Results for all ten pairwise
combinations can be found in Table 7.1.

all languages in the XL-IGT and Hindi datasets, while Tables 7.1b and 7.1b show the results

for the ten pairwise combinations of settings across all the languages in the XL-IGT and

Hindi datasets (see Chapter 4 for further descriptions of these datasets).

Looking at the overview in Fig. 7.4, we see that the projected DSs that use the gold

standard as the source perform reliably better than the automatically-generated source ones,

and that using manual alignment similarly boosts the scores. While some languages achieve

scores as high as 88% when using gold standard sources DSs and alignment, an important

takeaway from these results is that the overall UAS achieves only 81.0%. This 19% error is

important, as it represents an upper bound on what we may reasonably expect from systems

that rely upon projection. This demonstrates that even with perfect word alignment and



110

72.6
63.8

72.6
63.761.9

55.5

71.2
64.1

81.0

69.1 G-T+ODIN
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Manual
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Translation-Line DSs
Manual Parser

Projected DS Unlabeled Attachment Scores (UAS) 
on XL-IGT and RG-IGT Corpora

Figure 7.4: An overview of unlabeled parse accuracy for the dependency structures over
the languages in the XL-IGT corpus when the projection algorithm is used with different
alignment methods. The “Translation-Line DS” groups the two methods for creating the
dependency structure on the translation line, manually, or generated by a parser.

gold-standard translation-line DSs, the assumption that a projected DS will be correct for

the language line does not always hold.

Keeping this in mind, the 70+% UAS achieved for some languages, and 63–4% overall

using non-gold sources, while not particularly impressive, is a comparatively better result

than it might otherwise be for languages in which the only data available may be the IGT

instances in Odin.

Hwa et al. (2004) reports figures of 67–72% for Spanish, and 54–64% for Chinese; lan-

guages for which the authors have available 100,000–240,000 parallel sentences, respectively.

More recent work on projection by Ganchev et al. (2009) reports similar ranges without using

language-specific rules, 63.8% for projection between English and Bulgarian, and 67.6% for

English to Spanish. These methods use different data with longer sentences, so the numbers

are not strictly comparable. For comparison, the languages here have between 67–174 IGT
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instances, with an average length of between 6–7 words.

Beyond the potential suspects of noise and difficulty with projection, Section 7.4 will

discuss how part of this low overall score may be attributed either to structural dissimilarities

between languages or particular annotation decisions made in creating the evaluation data.

7.3 Combining Dependency Parsers with Projection

While the projection-based approach works for languages with very few resources, it has two

major limitations. First, this deterministic approach is unable to take word/tag ambiguities

into account unless they have been explicitly coded for. Second, systematic differences in how

dependency structures are represented between languages, either intrinsic to the language or

due to a design decision made in the treebank present a challenge to the algorithm, which

operates on the assumption that the dependency structures are English-like in nature.

One approach to better handling ambiguity, as previously published in Georgi et al.

(2012), is to join the information provided by the projected trees within IGT instances with

a small amount of training data for a statistical parser. The projected dependency edges may

then be used as a feature in parsing, one which may sometimes have a low weight if its use was

shown to not be particularly predictive at the training step. Section 7.3.1 will describe the

parser and the modifications that were made to include the projected dependency structures,

and Section 7.3.3 will discuss the results of these modifications.

7.3.1 MSTParser

The parser used in these experiments is MSTParser (McDonald et al., 2005), so named for

searching for Maximum Spanning Trees (MSTs) in directed graphs, an approach which has

an advantage over previous attempts (Eisner, 1996; Collins, 1999) in that, unlike transition-

based parsing, the graph traversal approach of this research is able to find a global optimal

parse, important for languages with freer word order and long-range dependencies. As the
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Training Tree 
Choices

IGT Instances

System 2a:
Basic MST Training

Obtain
TF Train MSTParser MSTParser Model

Gold

System 1

System 4
Translation Lines (E)

Gloss

Language Lines (F)

(a) Flowchart illustrating the training procedure for a given LF –LE language pair, where LF is
the foreign (non-English) language, and LE is English. The “Gold” trees for training the parser
can either be manually-created trees, or trees created by projection only.

Test Data

System 2b:
Basic MST Testing

Run MSTParser
Parsed F  Trees 

(TF 
)

Language Lines (F)

MSTParser Model

F Sentence

(b) A flowchart showing an overview of the testing procedure for the LF –LE language pair using
the LF parser produced in the training phase, and augmented by the information projected from
the parsed LE portion of the bitext. A Future system will include an augmented statistical aligner
to produce the LF –LE alignments.

Figure 7.5: Flowcharts describing the end-to-end functioning of the parsing system at both
training and testing phases.
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approach I present here is geared toward a broad range of languages, this aspect of the

algorithm is appealing.

By default, MSTParser operates on unigram, bigram, and trigram features. The unigram

features operate on a single word out of the two being examined at any given step by the

parser, and use either the word form or part-of-speech tag itself. The bigram features look

at both the child and parent words at a given step, while the trigram features add context.

According to McDonald et al. (2005), such trigram features help rule out certain unlikely

scenarios, such as a noun f1 depending on a verb f3 with an intervening noun f2. For a full

description of the feature set used, see §2.4 of McDonald et al. (2005). The learning algorithm

used is the Margin Infused Relaxed Algorithm (Crammer and Singer, 2003), which Collins

(2002) showed helps avoid over-fitting when training the parser. The unmodified MSTParser

is used as a baseline in the subsequent experiments, and a flowchart of the basic MSTParser’s

training and testing procedures using IGT data is shown in Fig. 7.5.

7.3.2 Adding Features to the Parser

In order for MSTParser to incorporate the information from the projected trees, new features

were needed for the parser. I introduced three new types of features. Let E be the English-

language sentence, F the foreign-language sentence, TP is the set of edges that make up the

projected tree, and RF→E and RE→F are relations that map words from the target language

(F ) to words in the translation (E) or vice versa. For a summary of all notation used, see

Appendix A.
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ProjBool(fi, fj) =

TRUE if(fi, fj) ∈ TP

FALSE otherwise

(7.1)

ProjTagpos1,pos2(fi, fj) =

TRUE if(fi, fj) ∈ TP ∧ POS(fi) = pos1 ∧ POS(fj) = pos2

FALSE otherwise

(7.2)

AlignType(fi, fj) =



IS SINGLE if
∣∣∣RF→E(fi)

∣∣∣ = 1

IS UNALIGNED if
∣∣∣RF→E(fi)

∣∣∣ = 0

IS MATCH if
∃ei, ej

(
ei ∈ RF→E(fi) ∧ ej ∈ RF→E(fj)

∧(ea, eb) ∈ TE

)

IS LEFTMERGE if
∃ei, ej

(
ei ∈ RF→E(fi) ∧ ej ∈ RF→E(fi)

∧ isParent(ei, ej)
)

IS RIGHTMERGE if ∃ei, fj
(
ei ∈ RF→E(fi) ∧ fj ∈ RE→F (ei)

)
(7.3)

The ProjBool feature (Eq. 7.1) is the most basic of the three, simply taking on a TRUE

value if the edge being considered by the parser also occurs in the projected tree TP . While

this feature covers the most cases, I also wanted to see if subdividing the feature by part-of-

speech tag might help reduce errors caused by particular POS tags that project poorly. The

ProjTag feature (Eq. 7.2) does this by creating separate boolean features for each POS tag
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fi

e2

e1 e4

e5

e3

fj

f1 ...

(a) The IS SINGLE alignment feature is fired
for token fi in this configuration.

fi

e2

e1 e4

e5

e3

fj

f1 ...

(b) The IS UNALIGNED alignment feature is
fired for token fi in this configuration.

fi

e2

e1 e4

e5

e3

fj

f1 ...

(c) The IS MATCH alignment feature is fired
for tokens (fi, fj) in this configuration.

fi

e2

e1 e4

e5

e3

fj

f1 ...

(d) The IS LEFTMERGE alignment feature is
fired for token fi in this configuration.

fi

e2

e1 e4

e5

e3

fj

f1 ...

(e) The IS RIGHTMERGE alignment feature is
fired for tokens (fi, fj) in this configuration.

Figure 7.6: Different alignment configurations that trigger the AlignType feature. In each
case, the dotted alignment arrows indicate that each word may have other words with which
it aligns, solid arrows indicate the shown alignment is the only one allowed.
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combination of parent and child. This risks exposing the parser to a severe sparsity issue,

so it is expected that this feature will be complementary to the ProjBool feature. Finally,

AlignType (Eq. 7.3) is actually a group of binary features used to subdivide agreement

with the projection based upon the type of alignment exhibited by the word on the foreign

language side. AlignType has five sub-features based on possible alignment types, which

are illustrated in Fig. 7.6. IS SINGLE [Fig. 7.6a] is TRUE when a token fi has only a single

match to the English-language tree in the alignments. IS UNALIGNED [Fig. 7.6b] is triggered

for foreign-language words that are not aligned with any English word, that is, the set of

English words that fi aligns to is the empty set.

IS MATCH is TRUE in the case where the edge (fi, fj) is being considered by the parser for

edge and the parent and child align with words ei, ej in the source (English) side, and have

the same parent/child relationship, as seen in Fig. 7.6c. IS LEFTMERGE is TRUE when the

foreign language word fi aligns with multiple words on the English tree, and one of those

words is an ancestor of the others (Fig. 7.6d). RIGHT MERGE is TRUE when the foreign language

word fi is one of multiple foreign words aligned with a single English word ei (Fig. 7.6e).

While the AlignType features and ProjBool features may seem similar, they operate

in two somewhat different ways. ProjBool and ProjTag features compare the partially

constructed parse tree to the projected version of the same tree during training and testing,

and thus learns the weight of the feature based upon how well the projected tree correlates

with the training trees. AlignType, on the other hand, compares the tokens of the current

target tree strictly using alignments to the source tree, and does not look at the projected

tree. This way, the AlignType features are focused on replicating the structures seen with the

alignments between the two languages. My intuition was that combining these two different

approaches should result in more robust performance than either feature set alone.

With these modifications made, the result is a parser that can be trained either with

trees formed by projection in a sort of self-training, or on a set of manually annotated trees.
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System 3a:
Aln/Match Feature-Enhanced MST Parser Training

F–E 
Alignments

TE Trees

MST Parsing Model

Match/Aln 
Features

Standard
Features

Standard F Trees

Gold

System 2

System 1

Projected F Trees

Gold

System 4

System 1

“Gold”
Trees

Projected
Trees

Parse
English

Standard
Extraction

Match/Aln
Extraction

Train
Parser

Generate
Alignments

Dependency 
Edges

Training IGT

Translation Lines (E)

Gloss

Language Lines (F)

(a) Flowchart demonstrating the training process for the modified MSTParser system.

System 3b:
Aln/Match Feature-Enhanced MST Parser Testing

F–E 
Alignments

TE Trees

Parsed TF Trees

Projected
Trees

Parse
English

Generate
Alignments

Test F Sentence 
& POS Tags

Match/Aln 
Features

Standard
Features

Standard
Extraction

Match/Aln
Extraction

MST Parsing 
Model

Extract
Sentences

Projected F Trees

Gold

System 4

System 1

Training IGT

Translation Lines (E)

Gloss

Language Lines (F)

(b) Flowchart demonstrating the testing process for the modified MSTParser system.

Figure 7.7: Flowcharts demonstrating the training and testing process for the modified MST-
Parser, using additional features provided by projected trees as described in Section 7.3.1.
Trees provided at training and testing time can either come from the gold standard, projec-
tions (As shown in “System 1”, Fig. 7.3) or the corrected trees (“System 4”) that will be
discussed in Section 7.4.
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A depiction of this system can be seen in Fig. 7.7.

7.3.3 Results

The MSTParser was evaluated using a number of different feature combinations, from the

baseline features (‘B’), to the baseline features plus all the new Bool/Tag/Align features

discussed in Section 7.3.1, to a system where the gold-standard trees were provided in the

place of projected trees for the additional features (‘Oracle’ systems). The results of these

experiments on the modified MSTParser can be seen in Table 7.2, where Table 7.2a shows

the results of using manually corrected trees for the training data with projected trees for

the additional features, and Table 7.2b shows the results of using projected trees for both

the training data and additional features.

The results in Table 7.2a show what is a fairly low baseline for the MSTParser baseline

system, ranging from 51.4%–80.8%, and never outperforming the projection algorithm.

This result does show the power of using projection for IGT instances, as despite the very

small amount of language data in the XL-IGT and HUTP corpora, a projection-based

approach is not constrained by data sparsity, and can produce reasonable structures using

only the IGT data and projection. When the parser is trained using the additional features,

however, the combined performance of adding the features from the projected trees to the

parser improves performance for the languages across the board.

The results for the projection-based systems in Table 7.2b are more modest, rarely per-

forming better than the projection results themselves. This is expected, as the parser is

being guided even more strongly by the projected trees in this system formulation.

7.3.4 Summary

The results of these experiments showed that using manually corrected trees in combination

with projected trees resulted in a better performing system than either projection alone, or
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Using Manually-Corrected English Trees for Training Source
System Gaelic German Hausa Hindi Korean Malagasy Welsh Yaqui Overall

B + Oracle 95.6 98.1 99.3 98.0 99.2 97.9 98.3 96.5 98.0
B + Oracle + POS 89.3 97.9 94.4 97.3 98.3 97.7 94.4 97.3 97.0

B + POS + Bool/Tag/Aln 79.4 91.3 88.0 78.9 89.9 91.9 94.4 86.8 88.4
B + POS + Bool/Aln 80.6 91.5 87.5 80.2 90.3 91.5 93.1 86.3 88.3
B + POS + Aln 75.8 90.1 85.2 78.7 89.7 90.9 89.6 86.5 87.1

B + POS + Bool/Tag 70.2 90.2 88.7 79.1 87.8 89.6 88.9 86.5 86.4
B + POS + Tag 65.9 83.5 82.6 76.7 82.4 79.5 72.9 83.8 79.1
B + POS + Bool 69.8 91.5 88.4 79.5 87.4 90.3 89.2 86.3 86.5
B + POS 63.1 82.1 83.8 77.2 80.8 81.5 75.0 81.8 79.3

B + Bool/Aln 78.6 89.3 90.3 76.7 91.7 91.5 94.1 86.3 88.1
B + Aln 76.2 89.3 90.5 73.0 93.0 89.6 90.6 86.0 86.5
B + Bool 70.2 87.8 87.7 77.3 92.3 89.4 91.3 85.5 87.2
MST Baseline (B) 55.2 62.7 72.2 65.2 80.8 73.0 51.4 66.1 67.3

Projection 78.6 87.9 79.4 67.8 89.7 89.6 89.6 84.8 84.3

(a) Results when manually-corrected trees were used as the main training source for the modified parser,
combined with the projection-based features.

Using Projected English Trees for Training Source
System Gaelic German Hausa Hindi Korean Malagasy Welsh Yaqui Overall

B + Oracle 79.8 95.1 84.5 75.7 98.6 94.2 87.5 96.3 90.4
B + Oracle + POS 72.6 90.7 80.3 67.0 95.7 90.9 86.1 89.5 85.8

B + POS + Bool/Tag/Aln 78.2 87.9 79.2 67.1 90.7 89.4 88.9 85.3 84.3
B + POS + Bool/Aln 78.2 87.2 79.2 66.9 90.5 90.3 88.9 83.8 84.1
B + POS + Aln 73.8 87.5 76.4 65.2 89.4 87.1 84.7 84.5 82.2

B + POS + Bool/Tag 73.4 87.1 78.7 66.1 90.3 89.2 86.1 84.0 83.1
B + POS + Tag 59.9 77.2 69.9 56.5 81.4 77.8 69.1 78.1 72.6
B + POS + Bool 74.2 87.6 79.4 66.7 89.4 88.6 84.4 85.0 82.8
B + POS 60.7 76.1 70.6 56.0 80.8 77.0 66.0 76.3 71.2

B + Bool/Aln 79.0 87.6 81.0 66.9 89.4 89.6 89.6 85.3 84.2
B + Aln 76.6 88.2 79.4 66.1 91.1 91.9 87.5 86.0 84.5
B + Bool 76.2 87.9 80.6 66.9 90.3 90.3 87.9 86.5 84.4
MST Baseline (B) 49.2 61.2 51.9 49.5 80.3 73.0 38.5 71.3 62.6

Projection 78.6 87.9 79.4 67.8 89.7 89.6 89.6 84.8 84.3

(b) Results when projected trees were used as the main training source for the modified parser, combined
with the projection-based features.

Table 7.2: UASs for the different feature sets used in the modified parser on the XL-IGT and
HUTP corpora. The baseline MST parser features are represented by ‘B,’ and additional
feature sets are combined with this system additively. “Oracle” describes not a feature set,
but the result of using the gold-standard trees in place of projected trees at train and test
time. The best-performing results for a language on a non-oracle-based system are shown in
bold.
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a parser trained on the projected trees. The main limitation of this approach, however, is

that the parsers created by this system require IGT data at test time, as well as manually-

corrected trees in a potentially resource-poor language to receive this boost. These settings

are not necessarily appropriate for real-world applications with resource-poor languages; a

more generalized approach will be presented in Section 7.5.

7.4 Analyzing and Correcting for Divergence Patterns

While the approach of the previous section was to train a parser that was able to use features

extracted from projected dependency trees at test time, I took a different approach to see if

errors that were recurrent in projected trees could be analyzed and systematically corrected

in the resulting projections.3

An additional goal of this set of experiments was not only to improve parsing performance,

but analyze language pairs for ways in which the translationally equivalent sentences might

be represented in fundamentally different ways, thus establishing a likely upper bound for

any methods that seek to assume direct correspondence between languages.

The concept of linguistic divergence here follows that of Dorr (1994), who describes a

number of types of linguistic divergence, using the concept of lexical conceptual structures

(Jackendoff, 1983)—structures that provide a framework to describe divergence arising from

syntactic, lexical, or semantic differences. Here, the focus of divergence will be restricted to

only the syntactic, since the systems presented here use predominately shallow processing,

and are lexically agnostic as well.

In this approach to automatically detecting divergent structures between language pairs,

I first propose a metric to measure the degree of matched edges between source and tar-

get trees (Section 7.4.1). Second, I define three operations on trees that will rewrite the

trees to more closely resemble the other language in the pair and resolve some divergence

3Previously published in Georgi et al. (2014).



121

si

sj sk

ti

tl tk

sl

(a) A match alignment

si

sj sk

ti

tl tk

sl

(b) A merge alignment

si

sj sk

tk

tl ti

sl

(c) A swap alignment

Figure 7.8: Definition of a match, merge, and swap edges in a tree pair.

patterns (Section 7.4.2). After a discussion of the results between different language pairs

(Section 7.4.3), I will discuss how these operations may be learned automatically and applied

as post-projection corrections (Section 7.4.4). Finally, the results of the application of the

correction rules will be discussed in Section 7.4.5.

7.4.1 Calculating Divergence Across Dependency Structures

One of the key aspects of this method was devising a metric to compare dependency trees

cross-linguistically, as most existing tree similarity measures are intended to compare tree

representations with the same number of tokens. Comparing between languages, on the other

hand, means that the number of tokens can vary. Instead, I look for a method to determine

similarity by means of matched edges in the tree, as shown in Fig. 7.8.

Given an IGT, let F be the representation of the language line, consisting of the language

words WF (Eq. 7.5) and parse tree TF (Eq. 7.6). The parse tree TF is defined as a set of

(parent, child) edges, as shown in Eq. (7.6).
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F = (WF , TF ) (7.4)

WF = (f1 . . . fn) (7.5)

TF =
{

(fi, fk) . . . (fn, fm)
}

(7.6)

E is defined similarly, except words in the translation line are denoted as ei, not fi. The

alignment A is a set of word pairs:

A =
{

(fi, ek) . . . (fj, el)
}

(7.7)

An aligned tree pair consists of the 3-tuple (F,E,A). A Corpus, C, in the experiments, is a

set of (F,E,A) tuples.

An edge (fi, fk) in the foreign-language tree is said to match an edge (ei, ek) in the

English-language tree if fi is aligned to ei and fk is aligned to ek. Because the alignment

between a sentence pair can be many-to-many, I define the following relations RF→E and

RE→F , which map a word from one sentence to the set of words in the other sentence.

RF→E(fi, A) =
{
e|(fi, e) ∈ A

}
(7.8)

RE→F (ei, A) =
{
f |(f, ei) ∈ A

}
(7.9)

I then define the boolean function match, as follows:
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match(fi, fj, TE, A) =



1 if ∃ea, eb

((
ea ∈ RF→E(fi)

)
∧

(
eb ∈ RF→E(fj)

)
∧
(

(ea, eb) ∈ TE
))

0 otherwise

(7.10)

That is, an edge (fi, fj) in F matches some edge in E according to A if there exists two

target words, ea and eb in E such that ea aligns to fi, eb aligns to fj, and (ea, eb) is an edge

in E.

Given an aligned tree pair (F,E,A), SentMatch(F,E,A) is defined as the percentage of

edges in F that match some edge in E. Again, the dependency type (label) is ignored, as for

the purposes of this work I wish to focus on the structure alone and save projection of depen-

dency labels and semantic roles for future work. Given a corpus C, CorpusMatchSrc→Tgt(C)

is the percentage of edges in the source trees that match some edges in the corresponding

target trees. Similarly, CorpusMatchTgt→Src(C) is the percentage of edges in the target trees

that match some edges in the corresponding source trees.

CorpusMatchSrc→Tgt(C) =

∑
(F,E,A) ∈ C

 ∑
(fi,fj) ∈ TF

match(fi, fj, TE, A)


∑

(F,E,A)∈C

∣∣TF ∣∣ (7.11)

7.4.2 Defining Tree Operations to Resolve Divergence

When an edge (fi, fk) in a tree does not match any edge in the other tree, it may be caused

by one of the following cases:
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C1. fi or fk are spontaneous (they do not align with any words in the other tree).

C2. fi and fk are both aligned with the same node ei in the other tree (Fig. 7.8b).

C3. fi and fk are both aligned with nodes in the other tree, ek and ei, but in a reversed

parent-child relationship (Fig. 7.8c).

C4. There is some other structural differences not caused by C1–C3.

The first three cases are common. To capture and resolve them, I define three operations

on a tree — remove, merge, and swap.

O1 – Remove

The remove operation is used to remove spontaneous words. As shown in Fig. 7.9a, removal

of the node l is accomplished by removing the link between node l and its parent, j, and

adding links between the parent and the removed node’s children.

This result of this operation looks can be seen in Fig. 7.9a, using the relation Children,

which maps a word to the set of all its children in the tree.

Algorithm 7.4.1: Remove a token w from the tree T .

1 Algorithm: Remove(w, T )

Input : T =
{

(wi, wj) . . . (wm, wn)
}

; // Input tree

Input : w ; // Word to remove.

Output : T ′ ; // Modified tree

2 begin
3 T ′ = T −

{
(w,wi)|wi = parent(w, T )

}
// Remove edge between w and parent wi

4 −
{

(wj , w)|w = parent(wj , T )
}

// Remove edges for children of w

5 +
{

(wj , wi)|wi = parent(w, T ), w = parent(wj , T )
}

;

/* Finish by ‘‘promoting’’ former children of w to now attach to w’s parent, wi.

*/

6 return T ′
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O2 – Merge

The merge operation is used when a node and some or all of its children in one tree align

to the same node(s) in the other tree, as can be seen in Fig. 7.8b. The parent j and child l

are collapsed into a merged node, as indicated by l+j in Fig. 7.9b, and the children of l are

promoted to become children of the new node l+j. The result can be seen in Fig. 7.9b.

Algorithm 7.4.2: Merge a child wc and parent wp in the tree T , and “promote” the
children of wc to be children of wp.

1 Algorithm: Merge(wc, wp, T )

Input : T =
{

(wi, wj) . . . (wm, wn)
}

; // Input tree

Input : wc ; // Child word to merge.

Input : wp ; // Parent word to merge.

Output : T ′ ; // Modified tree

2 begin
3 T ′ = T −

{
(wc, wp)

}
4 −

{
(wi, wc)|wc = parent(wi, T )

}
5 +

{
(wi, wp)|wc = parent(wi, T )

}
;

6 return T ′

O3 – Swap

The swap operation is used when two nodes in one tree are aligned to two nodes in the other

tree, but in a reciprocal relationship, as shown in Fig. 7.8c. This operation can be used to

handle certain divergence types such as demotional and promotional divergence, which will

be discussed in more detail in Line 25.

Figure 7.9c illustrates how the swap operation takes place by swapping nodes l and j.

Node j, the former parent, is demoted, keeping its attachment to its children. Node l, the

former child, is promoted, and its children become siblings of node j, the result of which can

be seen in Fig. 7.9c.
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Remove(l, T ) :
{
Children(j) = {o, p,m, n}

j

l m n

o p

h

i k j

m no p

h

i k

(a) Before and after the node l has been removed (O1).

Merge(j, l, T ) :

{
Children(j + l) = {o, p,m, n}
Children(h) = {i, j + l, k}

j

l m n

o p

h

i k l+j

m no p

h

i k

(b) Before and after the nodes l and j have been merged (O2).

Swap(j, l, T ) :


Children(j) = {m,n}
Children(h) = {i, l, k}
Children(l) = {o, p, j}

j

l m n

o p

h

i k

j

l

m n

o p

h

i k

(c) Before and after the nodes l and j have been swapped (O3).

Figure 7.9: Trees showing the results of the operations defined in O1–O3. Children(w)
returns the set of words that depend on w. Here we show the value of Children(node) after
the operations only if its value is changed by the operations.
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Algorithm 7.4.3: Swap a child wc and parent wp in the tree T .

1 Algorithm: Swap(wc, wp, T )

Input : TL =
{

(wi, wj) . . . (wm, wn)
}

; // Input tree

Input : wc ; // Child word to swap.

Input : wp ; // Parent word to swap.

Output : T ′ ; // Modified tree

2 begin
3 T ′ = T −

{
(wc, wp)

}
+
{

(wp, wc)
}

// Swap the order in the (wc, wp) edge

4 −
{

(wp, wi)|wi = parent(wp, T )
}

// Remove edges for parent wp

5 +
{

(wc, wi)|wi = parent(wp, T )
}

; // Add edges from wp’s parent to wc

6 return T ′L

Calculating Tree Matches After Applying Operations

The operations O1–O3 are proposed to handle common divergence cases in C1–C3. To

measure how common C1–C3 is in a language pair, I design an algorithm that transforms a

tree pair based on a word alignment.

The algorithm takes a tree pair (F,E) and a word alignment A as input and creates

a modified tree pair (S ′, T ′) and an updated word alignment A′ as output. It has several

steps. First, spontaneous nodes (nodes that do not align to any node on the other tree)

are removed from each tree. Next, if a node and its parent align to the same node on the

other tree, they are merged and the word alignment is changed accordingly. Finally, the

swap operation is applied to a node fi and its parent fp in one tree if they align to ei and

ep respectively and ep is a child of ei in the other tree. The pseudocode of the algorithm is

shown in Algorithm 7.4.4.

Now given a corpus C and word alignment between each sentence pair, I can measure the

impact of C1–C3 by comparing CorpusMatchSrc→Tgt(C) scores before and after applying

operations O1–O3. This process can also reveal some patterns of divergence (e.g., what types

of nodes are often merged), and the patterns can later be used to enhance existing projection

algorithms.
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Algorithm 7.4.4: Algorithm for altering an aligned tree pair.

input : c =
(
F,E,A

)
; // A parallel sentence with alignment

output : c′ =
(
F ′, E′, A′

)
; // modified output sentence.

1 Let F = (WF , TF ) ;
2 Let E = (WE , TE) ;
3 Let A = {(fi, ej), . . . , (fk, el)} ;
4 begin

// Step 1(a): Remove spontaneous nodes from F
5 foreach fi ∈WF do
6 if @ ej :

(
fi, ej

)
∈ A then

7 TF = Remove(fi, TF ) ; // See Algorithm B.1.2

// Step 1(b): Remove spontaneous nodes from E
8 foreach ej ∈WE do
9 if @ fi :

(
fi, ej

)
∈ A then

10 TE = Remove(ei, TE) ; // See Algorithm B.1.2

// Step 2(a): Find nodes to merge in F and merge them

11 foreach (fi, ej) ∈ A do
12 Let fp = parent(fi, TF ) ;
13 if (fp, ej) ∈ A then
14 TF = Merge(fi, fp, TF ) ; // See Algorithm 7.4.2

15 A = A− {(fi, ej)} ;

// Step 2(b): Find nodes to merge in E and merge them

16 foreach (fi, ej) ∈ A do
17 Let ep = parent(ej , TE) ;
18 if (fi, ep) ∈ A then
19 TE = Merge(ej , ep, TE) ; // See Algorithm 7.4.2

20 A = A− {(fi, ej)} ;

// Step 3: Find nodes to swap in F and swap them

21 foreach (fi, ej) ∈ A do
22 Let fp = parent(fi, TF ) ;
23 if ∃ ec : ej = parent(ec, TE) and (fp, ec) ∈ A then
24 TF = Swap(fi, fp, TF ) ; // See Algorithm 7.4.3

25 return (F ′, E′, A′) ;
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Relationship to Dorr (1994)

Dorr (1994) lists seven types of divergence for language pairs. While the analysis method

presented here is more coarse-grained than the Lexical Conceptual Structure (LCS) that

Dorr proposes, it is nonetheless able to capture some of the same cases.

For instance, Fig. 7.10 illustrates an example of what Dorr identified as “promotional”

divergence, where usually, a dependent of the verb goes in English, is “promoted” to become

the main verb, suele in Spanish. In this case, the direction of the dependency between usually

and goes is reversed in Spanish, and thus the swap operation can be applied to the English

tree and result in a tree that looks very much like the Spanish tree. A similar operation is

performed for demotional divergence cases, such as aligning I like eating with the German

translation Ich esse gern (“I eat likingly”). Here, the main verb in English (like) is demoted

to an adverbial modifier in German (gern). The swap operation is applicable to both types

of divergence and treats them equivalently, and so it essentially can handle a superset of

promotional and demotional divergence, namely, head-swapping.

Juan suele ir a casa

John tends-to go home

‘‘John usually goes home’’

usually

goes

John home

a casa
home

suele [VB]
tends to

Juan
John

ir
go

English Spanish

Figure 7.10: An example of promotional divergence from Dorr (1994). The reverse in parent-
child relation is handled by the Swap operation.

Another type of divergence that can be captured by our approach is Dorr’s “structural”

divergence type, as illustrated in Fig. 7.11. The difference between the English and Spanish

structures in this case is the form of the argument that the verb takes. In English, it is a noun
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Juan entró en la casa

John entered in the house

‘‘John entered the house’’

house

entered

John

the casa
house

entró
entered

Juan
John

en
in

English Spanish

la
the

Figure 7.11: Example of structural divergence, which is handled by the remove operation.

phrase; in Spanish, it is a prepositional phrase. While the tree operations defined previously

do not explicitly recognize this difference in syntactic labels, the divergence can be handled

by the remove operation, where the spontaneous en in the Spanish side is removed.

Next, Dorr’s description of conflational divergence lines up well with the merge operation

(see Fig. 7.9b). Fig. 7.12 illustrates an example for English and Hindi, where both sides have

spontaneous words (e.g. to and a in English and ne, se and ko in Hindi) and a causative

verb in Hindi corresponds to multiple verbs in English. Fig. 7.12(b) shows the original tree

pair, Fig. 7.12(c) demonstrates the altered tree pair after removing spontaneous words from

both sides. Fig. 7.12(d) shows the tree pairs after the English verbs are merged into a single

node. It is clear that the remove and merge operations make the Hindi and English trees

much similar to each other.

In addition to the four divergence types mentioned above, additional operations could

be added to handle other divergence types. For instance, if dependency types (e.g., patient,

agent) are given in the dependency structure, we can define a new operation that changes

the dependency type of an edge to account for thematic divergence, where thematic roles

are switched as in I like Mary in English vs. Maŕıa me gusta a mı́ (“Mary pleases me”) in

Spanish. Similarly, an operation that changes the POS tag of a word can be added to cover

categorial divergence where words representing the same semantic content have different

word categories in the two languages, such as in I am hungry in English versus Ich habe
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mohana ne kala Arif se mInA ko kiwAba xilavAyI

Mohan [erg] yesterday Arif [inst] Mina [dat] book give-caus

‘‘Mohan caused Mina to be given a book through Arif yesterday.’’

(a) Interlinear text of a sentence pair in Hindi (hin).

caused

Mohan Mina given

book

yesterday

a

throughbeto

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

ne
[erg]

se
[instr]

ko
[dat]

(b) Initial trees showing spontaneous words on both sides.

caused

Mohan Mina given

book

yesterday

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

(c) Altered trees after removing spontaneous words from both sides, and showing conflational divergence
between multiple English words and a single Hindi word.

caused+given

Mohan Mina book yesterdayArif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

(d) Altered trees after merging multiple words on the English side.

Figure 7.12: Case of conflational divergence, handled by remove and merge operations.

http://www.ethnologue.com/language/hin
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English→Hindi Hindi→English

Match Swap Unaligned Merge Edges Match Swap Unaligned Merge Edges

Baseline 47.7 9.1 20.9 1.6 794 46.3 5.6 20.7 1.7 816

+Remove 66.1 11.7 0 2.1 622 63.4 5.3 0 2.2 647
+Merge 69.5 12.3 0 0 586 69.2 4.6 0 0 587
+Swap 90.3 0.3 0 0 586 89.9 2.4 0 0 587

Table 7.3: Breakdown of edges as operations are applied to the English ↔ Hindi language
pair (from bottom up) on the HUTP corpus. The “Edges” column represents the number
of total edges in the trees of the left hand of the language pair. The numbers given in the
other columns are the percentages of those edges that are either in a match, swap, or merge
alignment, or the edges for which the child is unaligned.

Hunger (“I have hunger”) in German.

In contrast to Dorr’s divergence types, whose identification requires knowledge about the

language pairs, my operations on the dependency structure rely on word alignment and tree

pairs and can be applied automatically.

7.4.3 Match Results

By running Algorithm B.2.1, CorpusMatchSrc→Tgt and CorpusMatchTgt→Src can be cal-

culated before and after each operation in order to measure how the operation affects the

percentage of matched edges in the corpus. As the operations are applied, the percentage of

matches between the trees should increase until all the divergence cases that can be handled

by operations O1–O3 have been resolved. At this point, the final match percentage can be

seen as an estimate of the upper-bound on performance on a projection algorithm, if C1–C3

can be identified and handled by O1–O3. Table 7.3 shows the full results of this process for

English and Hindi, while Table 7.4 shows a summary for the results in the remaining ten

languages.
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Gaelic German Hausa Malagasy Korean Welsh Yaqui

Baseline 72.0 76.7 54.4 57.4 56.0 75.4 54.4

+Remove 87.8 93.9 95.7 88.9 88.1 95.1 90.9
+Merge 92.5 95.4 97.5 97.4 95.4 97.2 95.9
+Swap 94.1 96.8 97.5 98.0 96.1 98.2 96.2

Table 7.4: Summary of match percentages for the remaining seven language pairs of the
XL-IGT corpus.

Breakdown By POS

After performing the operations as seen in Section 7.4.3, the breakdown of the operations

by language and POS, as is done in Table 7.5 provides a good opportunity to check that the

defined operations conform with expectations for specific languages.

For instance, row 1 in Table 7.5a also shows Modals (MD) merging with a parent verb

(VB). This is in line with instances such as Figure 7.12c where Hindi states in a single verb a

causative meaning that is typically expressed as a separate words in English. This does not

appear to be a very frequent occurrence, however, as it only occurs for 42.9% of MD→VB

dependencies. Row 3 shows the case in Hindi where auxiliary verbs (VAUX) merge with

main verbs (VM). These cases typically represent those where Hindi represents tense as an

auxiliary verb, whereas English tense is expressed by inflection on the verb.

Rows 5 and 6 show the English→German pair merging many nouns as multiple English

words are expressed as compounds in German. In another case, rows 1–2 in Table 7.5b show

that all Hindi nouns undergo swap with prepositions, as the Hindi uses postpositions instead

of prepositions, and the HUTP corpus places these nouns as the heads of the phrases.

With regard to spontaneous words in English and Hindi, row 3 in Table 7.5c shows that

69.8% of case markers (PSP) were removed from Hindi that were either absent in English

or applied as inflections to the noun, while 86% of determiners in English were removed, as

they are not seen in Hindi (row 1).
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Merges

Lang Pair Child POS Parent POS % Merge

Eng→Hin
MD VB 42.9
NN NN 14.3

Hin→Eng
VAUX VM 45.4
NN VM 5.5

Eng→Ger
NN NNS 66.7
NN NN 65.4

(a) Breakdown of merge operations between language pairs by
POS tag.

Swaps

Lang Pair Child POS Parent POS % Swap

Hin→Eng
NN IN 100
NNP IN 20

Ger→Eng
NN APPRART 72.7
CC NN 61.5

(b) Breakdown of swap operations between language pairs by
POS tag.

Removals
Lang Pair POS Tag % Remove

Eng→Hin
DT 86.4
TO 75.6

Hin→Eng
PSP 69.8
VAUX 18.6

Eng→Ger
POS 57.1
DT 20.2

Ger→Eng
PRF 85.2
ADV 43.9

(c) Breakdown of removal operations between
language pairs by POS tag.

Table 7.5: Breakdown of significant merge and swap statistics for various language pairs
in the XL-IGT and HUTP corpora, where the language to the left of the arrow is the one
being altered.
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merA mana amarIkA meM hE

my mind America in is

‘‘I am mentally in America’’ America

am

I

hE
is

mana
mind

amarIkA
America

in

meM
in

English Hindi

mentally

merA
my

Figure 7.13: A tree pair that still has unmatched edges after applying the algorithm in
Table 7.4.4. The dotted line indicates word alignment that would be needed to resolve the
divergence with the extended merge operation.

Remaining Cases

After applying three operations, there may still be unmatched edges. An example is given in

Figure 7.13.4 The dependency edge (in, America) can be reversed by the swap operation to

match the Hindi counterpart. The difficult part is the adverb mentally in English corresponds

to the noun mana (mind) in Hindi. If the word alignment includes the three word pairs as

indicated by the dotted lines, one potential way to handle this kind of divergence is to extend

the definition of merge to allow edges to be merged on both sides simultaneously – in this

case, merging am and mentally in the English side, and hE (is) and mana (mind) on the

Hindi side.

7.4.4 Learning Correction Patterns

After looking closely at how frequent particular patterns occurred in Section 7.4.3, the next

step was to devise a series of simple corrections that could be applied to the trees as a post-

processing step. By examining the projected and gold-standard tree pairs, when and how

these corrections needed to be applied could be learned. Using the three alignment types

4It is a topic of debate whether mentally in English should depend on in or am. If it depends on in,
handling the divergence would be more difficult.
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rAma buxXimAna lagawA hE

Ram intelligent seem be-Pres

‘‘Ram seems intelligent’’

seems
VBZ

Ram
NNP

intelligent
JJ

lagawA
seems

ram
Ram

buxXimAna
intelligent

hE
be-Pres

Figure 7.14: An example of merged alignment, where the English word seems aligns to two
Hindi words hE and lagawA. Beside the IGT instance are the dependency trees for English
and Hindi. Dotted arrows indicate word alignment, and the solid arrow indicates that hE
should depend on lagawA.

discussed in Section 7.4.2, the following improvements could be made to the resultant trees:

O1. Merge: better informed choice for head for multiply-aligned words.

O2. Swap: post-projection correction of frequently swapped word pairs.

O3. Spontaneous: better informed attachment of target spontaneous words.

The details of the enhancements are explained below.

Merge Correction

“Merged” words, or multiple words on the target side that align to a single source word, are

problematic for the projection algorithm because it is not clear which target word should

be the head and which word should be the dependent. An example is given in Figure 7.14,

where the English word seems aligns to two Hindi words hE and lagawA.

In these merge cases, the training trees can be used to analyze which word is most likely

to be the head and which the dependent. This learning process can be generalized away from

the specific words by using the POS tags of the words in the merge alignment. The process

is illustrated in Fig. 7.15. In this example, the target words tm and tn are both aligned with

the source word si whose POS tag is POSi, and tm appears before tn in the target sentence.

Going through the examples of merged alignments in the training data, a count is kept for
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the POS tag of the source word and the position of the head on the target side.5 Based on

these counts for a given language, the system will generate rules such as the ones in Figure

7.15(c), which says if a source word whose POS is POSi aligns to two target words, the

probability of the right target word depending on the left one is 75%, and the probability

of the left target word depending on the right one is 25%. Maximum likelihood estimation

(MLE) is used to calculate this probability.

The projection algorithm will use those rules to handle merged alignment; that is, when

a source word aligns to multiple target words, the algorithm determines the direction of

dependency edge based on the direction preference stored in the rules. In addition to rules

for an individual source POS tag, this method also keeps track of the overall direction

preference for all the merged examples in that language. For merges in which the source

POS tag is unseen or there are no rules for that tag, this language-wide preference is used

as a backoff.

5The position of the head is used, not the POS tag of the head, because the POS tags of the target words
are not available when running the projection algorithm on the test data.

si
POSi

tm

tn

(a) Alignment between a
source word and two tar-
get words, and one target
word tm is the parent of
the other word tn.

tm tn to ... tp
(b) Target sentence show-
ing the “left” dependency
between tm and tn.

POSi → left 0.75

POSi → right 0.25

(c) Rules for handling merged
alignment

Figure 7.15: Example of merge alignment and derived rules.
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siwA ne pAnI se GadZe ko BarA

Sita filled the clay-pot with water

Sita erg water with clay-pot acc filled

(a) An Interlinear Glossed Text (IGT) instance in
Hindi and word alignment between the gloss line
and the English translation.

Sita

filled

the

clay-pot with

water
(b) Dependency parse of English translation.

siwA

BarA

the

GadZe se

pAnI
(c) English words are replaced with Hindi words
and spontaneous word “the” are removed from the
tree.

siwA

BarA

GadZese

pAnIne ko
(d) Siblings in the tree are reordered based on the
word order of the Hindi sentence and spontaneous
Hindi words are attached as indicated by dotted
lines. The words pAnI and se are incorrectly in-
verted, as indicated by the curved arrow.

Figure 7.16: An example of projecting a dependency tree from English to Hindi.

Swap Correction

An example of swapped alignment is in Fig. 7.17a, where (sj, si) is an edge in the source tree,

(tm, tn) is an edge in the target tree, and sj aligns to tn and si aligns to tm. Figure 7.16d

shows an error made by the projection algorithm due to swapped alignment. In order to

correct such errors, I count the number of (POSchild, POSparent) dependency edges in the

source trees, and the number of times that the directions of the edges are reversed on the

target side. Figure 7.17b shows a possible set of counts resulting from this approach. Based

on the counts, we keep only the POS pairs that appear in at least 10% of training sentences

and the percentage of swap for the pairs are no less than 70%.6 We say that those pairs

trigger a swap operation.

At test time, swap rules are applied as a post-processing step to the projected tree. After

the projected tree is completed, the swap handling step checks each edge in the source tree.

6These thresholds are set empirically.
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si
POSi

tm

tn

sj
POSj

(a) A swapped alignment between
source words sj and si and target
words tm and tn.

POS Pair Swaps Total %

(POSi, POSj) → 16 21 76

(POSk, POSl) → 1 1 100

(POSn, POSo) → 1 10 10

(b) Example set of learned swap rules. Swaps

counts the number of times the given (child, par-
ent) pair is seen in a swap configuration in the
source side, and total is the number of times said
pair occurs overall.

Figure 7.17: Example swap configuration and collected statistics.

If the POS tag pair for the edge triggers a swap operation, the corresponding nodes in the

projected tree will be swapped (see Fig. 7.9c).

Spontaneous Reattachment

Target spontaneous words are difficult to handle because they do not align to any source

word and thus there is nothing to project to them. To address this problem, two types

of information are collected from the training data. First, I keep track of all the lexical

items that appear in the training trees, and the relative position of their head. This lexical

approach may be useful in handling closed-class words which account for a large percentage

of spontaneous words. Second, we use the training trees to determine the favored attachment

direction for the language as a whole.

At test time, for each spontaneous word in the target sentence, if it is one of the words

for which statistics have been gathered from the training data, it is attached to the next

aligned word in the preferred direction. If the word is unseen, it is attached using the overall

language preference as a backoff.
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System 4a: Corrected Projection Training

F–E 
Alignments

TE Trees

Generate
Alignments

Parse English

Gold TF Trees

Learn
Corrections

Correction 
Rules

Projected 
TF Trees 

System 1

IGT

Translation Lines (E)

Gloss

Language Lines (F)

(a) Flowchart illustrating the training phase of learning the correction patterns.

System 4b: Corrected Projection Testing

Projected 
TF Trees

System 1

Correction 
Rules

Auto-Corrected
TF Trees

Apply
Rules

IGT

Translation Lines (E)

Gloss

Language Lines (F)

(b) Flowchart demonstrating the testing phase of applying correction patterns to
test IGT data.

Figure 7.18: Flowcharts demonstrating the training and testing steps of the enhanced pro-
jection system (System 4).

Resulting System

The system that results from integrating these correction rules into the projection algorithm

is illustrated in Fig. 7.18. In addition to above enhancements to the projection algorithm

itself, I ran experiments training a dependency parser on the improved projections, reusing

the additional parser features from Section 7.3.1. The resulting system is a combination of

the one shown in Fig. 7.18 feeding into the training and testing trees provided to “System

3” shown in Fig. 7.7.
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7.4.5 Correction Rule Results

I ran two different experiment settings using these automatically applied correction rules;

the first was to use the correction rules directly on projected sentences. These results are

shown in Table 7.6a. The second setting was to use the improved projections at training and

testing for the projection-guided parser described in Section 7.3.1. These results are shown

in Table 7.6b.

In both of the tables, the “Best” row uses the enhanced projection algorithm. The

“Baseline” rows use the original projection algorithm from Section 7.2, where the word in

the parentheses indicates the direction of merge. The “Error Reduction” row shows the

error reduction of the “Best” system over the best performing baseline for each language.

The “No Projection” row in the second table shows parsing results when no features from

Gaelic German Hausa Hindi Korean Malagasy Welsh Yaqui Overall

Best 87.7 88.7 90.1 77.4 91.8 93.1 94.9 88.0 88.0
Baseline (Right) 86.9 88.0 79.3 57.5 90.3 89.6 89.8 87.3 87.3
Baseline (Left) 77.0 88.0 79.5 68.1 88.9 89.6 89.8 84.3 84.3

Error Reduction 6.1 5.7 51.7 29.3 14.6 33.4 50.0 5.9 5.9

(a) The accuracies of the original projection algorithm (the Baseline rows) and the enhanced
algorithm (the Best row) on eight language pairs. For each language, the best performing
baseline is in italic. The last row shows the error reduction of the Best row over the best
performing baseline, which is calculated by the formula ErrorRate = Best−BestBaseline

100−BestBaseline ×100

Gaelic German Hausa Hindi Korean Malagasy Welsh Yaqui Overall

Best 81.4 92.9 88.7 81.4 93.0 93.1 94.9 89.3 89.3
Baseline (Right) 81.0 90.5 87.6 78.0 92.4 92.4 94.2 88.3 88.3
Baseline (Left) 81.0 90.5 89.2 79.6 91.0 92.4 94.2 87.9 87.9
No Projection 55.2 62.7 72.2 65.2 80.8 73.0 91.3 66.1 66.1

Error Reduction (BestBaseline) 2.1 25.7 -4.3 8.4 8.0 8.2 11.8 8.5 8.5
Error Reduction (No Projection) 58.4 81.0 59.5 46.5 63.4 74.2 41.2 68.4 68.4

(b) The parsing accuracies of the MSTParser with or without new features extracted from projected trees.
There are two error reduction rows: one is with respect to the best performing baseline for each language,
the other is with respect to No Projection where the parser does not use features from projected trees.

Table 7.6: Unlabeled Attachment Scores of enhanced projection system (System 4) on the
eight languages of the XL-IGT and HUTP corpora.
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the projected trees are added to the parser, and the last row in that table shows the error

reduction of the “Best” row over the “No Projection” row.

The results in Table 7.6 show that using features from the projected trees provides a big

boost to the quality of the statistical parser, reinforcing what was previously demonstrated

in Section 7.3.1. Furthermore, the enhancements laid out in Section 7.4.4 improve the per-

formance of both the projection algorithm and the parser that uses features from projected

trees. The degree of improvement may depend on the properties of a particular language pair

and the labeled data for that language pair. For instance, the swap rule is used frequently

for the Hindi–English pair because of the choice of headedness for adpositions between Hindi

and English. As a result, the enhancement for the swapped alignment alone results in a large

error reduction, as in Table 7.7. This table shows the projection accuracy on the Hindi data

when each of the three enhancements is turned on or off. The rows are sorted by descending

overall accuracy, and the row that corresponds to the system labeled “Best” in Table 7.6b

is in bold.
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Spont Swap Merge Direction Accuracy

X X Left 78.1
X X Informed 77.4

X Left 76.7
X Informed 76.1

X Left 69.5
X Informed 69.0

Left 68.1
Informed 67.6

X X Right 66.3
X Right 65.0

X Right 58.8
Right 57.5

Table 7.7: Projection accuracy on the Hindi data, with the three enhancements turning on or
off. The “spont” and “swap” columns show a check mark when the enhancements are turned
on. The merge direction indicates whether a left or right choice was made as a baseline, or
whether the choice was informed by the rules learned from the training data.

Discussion

These sets of experiments have two important takeaways: first, that using projection to

transfer DSs between languages is indeed more complicated than just finding the optimal

word alignments between language pairs – there are some fundamental differences between

how the same sentences are structured in different languages. Secondly, the results of these

experiments show that there is indeed room to improve upon the projection algorithms, and

that the projection-guided parser performs even better with these improved projections.

In the end, however, this approach is still fundamentally limited by the requirement of

having gold-standard parse trees to achieve optimal results, as well as requiring parallel

data at testing time. In the next set of experiments, I examine what possibilities there are

for using these IGT resources for producing a system capable of parsing monolingual input

data.
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7.5 Training Dependency Parsers for Monolingual Data

While the previous approaches at improving upon DS projection did indeed result in improve-

ments, they assumed an idealized set of conditions, requiring IGT data as input, manually-

corrected DS trees, and gold-standard POS tags.

Given the target of resource-poor languages, however, it would be ideal if the parser

produced by the system would have the ability to parse monolingual sentences in the target

language without any further intervention. This system would be even more powerful if no

language-specific knowledge was required, aside from that which was provided by the IGT

found in Odin.

This end-to-end pipeline from Odin data to monolingual DS parser is what will be

described in this section. I will start with a discussion of how the parser will be trained

(Section 7.5.1), followed by a the different scenarios that were used for the experiments

(Section 7.5.2) before presenting the results (Section 7.5.3).

7.5.1 Training the Monolingual Parser

The previous dependency parsing systems 1–4 were systems which required IGT data at test

time to produce parses. Although these systems were able to leverage additional information

through the use of IGT test data, here I would like to produce a system capable of training

on IGT data, but running only on monolingual test data. With this goal, I now present the

system shown in Fig. 7.19. Here, the IGT instances in Odin are used as training data for

the MSTParser, as described in Section 7.3, but this time without the assumption of any

manual DSs or POS tags. Testing is carried out the same as the example shown in Fig. 7.5a.

This system will represent the end of a pipeline of enrichment that includes multiple word

alignment methods, POS tag information added by leveraging the unique gloss-line features

of IGT, and the ability to draw this data from any of the 1,487 languages in Odin.
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System 5a:
Monolingual Pipeline Training

E Parser

TF  for IGT 

Instances

Heur –POS

Stat

Heur +POS

S+Heur

Translation Lines (E)
Gloss

Language Lines (F)

IGT Instances

DS Projection
(System 1)

POS Tag F

Train MSTParser

MSTParser Model

Classification

Projection

Figure 7.19: Flowchart illustrating the pipeline for training a monolingual DS parser from
IGT. This is essentially the same process as the system shown in Fig. 7.5, except that POS
tags are not assumed of the IGT instances, and a choice between the classification and
projection approaches described in Section 6.3 and Section 6.2 is used to add POS tags to
the training TF trees.
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7.5.2 Monolingual Parsing Settings

Fully Aligned Instances

Language ISO
All

Instances
Filtered

Instances Stat
Stat

+Heur Heur
Heur

+POS

Bulgarian bul 1,802 659 302 302 158 292
French fra 7,412 1,360 479 479 216 394
German deu 10,814 3,233 1,659 1,658 813 1,464
Gaelic gle 954 354 176 174 65 125
Hausa hau 2,504 1,149 398 398 50 221
Indonesian ind 1,699 1,101 524 524 131 427
Italian ita 3,513 964 439 439 166 363
Korean kor 5,383 2,287 1,496 1,496 575 1,181
Malagasy plt 1,402 660 146 147 113 242
Portuguese por 742 251 118 118 65 115
Spanish spa 3,390 1,340 593 593 249 451
Swedish swe 1,628 351 180 179 87 159
Welsh cym 404 196 95 95 54 81
Yaqui yaq 664 415 303 303 124 277

Table 7.8: Breakdown of Odin instances, with all available instances; instances filtered
for having Language, Gloss, Translation lines, and 1-to-1 language↔gloss alignment; and
number of instances with every language line token aligned with one or more translation line
tokens for each of the languages tested against the XL-IGT and UD-2.0 corpora.

With the monolingual parsing approach, there are several options to consider for training

the parser. Since the parser is being trained on projected IGT instances as in Section 7.2,

there are the four available sources for word alignment. An additional setting to consider,

given the reliance upon projected DSs, is whether or not to use IGT instances for which

there is not complete alignment between translation and gloss lines.7 Table 7.8 gives a

breakdown of the data that will be available for each of these settings. This table shows

the number of IGT instances that were available in total for each language under “All

7As is the case in all the experiments using the raw Odin data, IGT instances that do not have an
equal number of whitespace-delimited tokens on the gloss and translation lines (ignoring punctuation) are
discarded. That is, one-to-one alignment between gloss and language tokens is required, to attempt to cut
down on misaligned projection.
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Instances,” the number of languages for which Language, Gloss, and Translation Lines are

all present, and the Language and Gloss lines have a 1-to-1 alignment (“Filtered Instances”),

and then the number of instances for which every language line token is aligned with one or

more translation line token (“Fully Aligned Instances”) for each alignment method. Each

additional filtering step greatly reduces the number of available instances, so there is a trade-

off of quantity for quality of annotation the more aggressive the filtering.

Finally, I will be using the UD-2.0 corpus (McDonald et al., 2013), which was created

from “newswire, weblogs and/or consumer reviews” (p. 94) for evaluation. This means both

a substantial difference both in length and domain of the text, so I also evaluate against

held-out IGT data with gold-standard DSs from the XL-IGT corpus. In addition, I also

perform evaluation on the UD-2.0 corpus using only sentences with a length of 10 words or

fewer.

7.5.3 Monolingual Parsing Results

In presenting the results of these experiments, I will first start with the most favorable set-

tings, testing the trained parsers on IGT language data that has been stripped of annotation

and excluded from the training data.

Results on XL-IGT Corpus

The tables in Table 7.9 show the Unlabeled Attachment Scores for four settings. Tables 7.9a

and 7.9b show the scores when the parser is trained with projected tags and classifier-

produced tags, respectively, and when all instances are used for training, whether or not all

words on the language line are aligned with a gloss token. Tables 7.9c and 7.9d show the

scores when the parser is trained only with instances for which every language line token is

aligned with a gloss-line token.

Though the scores are similar between settings in average, they can vary wildly between
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Projected Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

German 68.7 70.3 59.0 72.4
Hausa 55.8 56.5 36.3 41.3
Korean 73.4 72.6 50.7 68.7
Welsh 55.8 50.8 49.2 60.4
Yaqui 53.6 54.4 39.2 59.4

Overall 63.0 62.9 48.2 61.9

(a) UAS results using projected POS tags and all
instances, regardless of how many words in the
instance were aligned.

Classifier Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

German 70.6 69.9 57.3 65.8
Hausa 51.9 54.7 38.3 41.5
Korean 65.8 65.8 48.7 65.8
Welsh 52.8 55.5 49.8 53.8
Yaqui 55.1 52.9 33.4 59.4

Overall 61.0 61.3 46.7 58.5

(b) UAS results using classifier-produced POS
tags and all instances, regardless of how many
words in the instance were aligned.

Projected Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

German 71.5 71.5 69.6 70.0
Hausa 52.6 52.4 18.8 49.2
Korean 76.9 77.7 75.0 73.8
Welsh 41.9 40.6 39.0 47.0
Yaqui 56.9 56.6 53.9 58.6

Overall 62.9 62.8 54.9 62.1

(c) UAS results using projected POS tags and only
instances in which an aligned token was found for
every word in the language line.

Classifier Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

German 70.4 70.4 70.6 66.1
Hausa 50.1 50.3 23.4 37.6
Korean 75.0 76.3 75.3 73.2
Welsh 40.6 40.3 43.1 45.1
Yaqui 59.1 58.4 57.1 60.6

Overall 61.9 62.1 57.2 58.8

(d) UAS results using classifier-produced POS
tags and only instances in which an aligned token
was found for every word in the language line.

Table 7.9: UASs for parsers trained on the automatically enriched data from all available
instances in Odin for that language and tested on the language lines of the XL-IGT cor-
pus data, using POS tags that were either projected using the given alignment method or
produced by the gloss-line classification method.
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languages. For instances, although Korean shows results of 50.7% and 48.7% using heuristic

alignments when all instances are used, this jumps to 75% and 75.3% when only fully aligned

instances are used. Conversely, scores for Welsh drop roughly 10% across all alignment

methods when only fully-aligned instances are used. As can be seen in Table 7.8, while

Korean drops from 2,287 filtered instances to 575 when filtering for those that are heuristically

fully-aligned, Welsh drops from 196 to only 54. As might be expected, using fully-aligned

instances tends to improve performance by increasing the quality of data, but quantity can

become a limiting factor.

With regards to the alignment methods, while there is again variation between specific

languages, overall the Stat and Stat+Heur alignment methods outperform the heuristic-only

approaches for this task. For the POS tagging methods, it appears that using projected POS

tags seems to outperform the classification-based approach overall, as well.

With these three observations, it appears that for this task, a higher-recall alignment

method is preferred for optimal results, in combination with the higher precision, lower

recall POS tagging methods.

Results on UD Data, Short Sentences (≤ 10 Words)

The tables in Table 7.10 give a breakdown of the different settings for this experiment simi-

larly to the previous table, but for this setting, on sentences from the Universal Dependency

Treebank, v2.0 consisting of ten words or fewer. The languages used from the Universal

Dependency treebank vary from those used in the XL-IGT corpus, though German is found

in both.

By switching domains from the simple, illustrative sentences used in the IGT data from

the XL-IGT corpus to the far freer newswire and blog domain of the UD-2.0 corpus, we see

the UAS results drop substantially. This change in domain is accompanied by a substantial

change in vocabulary from the IGT instances in Odin. Furthermore, there are likely syntactic
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Projected Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 36.4 36.6 30.0 40.1
German 40.5 39.0 31.2 44.4
Indonesian 24.1 24.1 13.8 28.2
Italian 35.5 36.7 33.5 37.0
Portuguese 35.7 34.2 25.1 36.3
Spanish 35.4 34.6 28.9 34.5
Swedish 27.2 27.2 18.8 26.9

Overall 34.5 34.0 26.5 36.5

(a) UAS results using projected POS tags and all in-
stances, regardless of how many words in the instance
were aligned.

Classifier Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 36.2 35.2 32.9 37.2
German 42.6 42.9 33.1 41.9
Indonesian 23.9 23.9 20.3 27.3
Italian 34.0 34.2 33.3 35.5
Portuguese 37.0 35.3 34.2 36.2
Spanish 30.9 32.3 31.4 32.0
Swedish 26.2 26.2 26.1 35.5

Overall 34.2 34.1 30.7 36.0

(b) UAS results using classifier-produced POS tags
and all instances, regardless of how many words in
the instance were aligned.

Projected Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 38.6 38.6 34.8 36.7
German 41.0 41.0 41.7 42.0
Indonesian 25.4 25.4 26.8 30.8
Italian 36.2 36.2 33.5 34.0
Portuguese 30.1 30.9 32.9 30.8
Spanish 33.8 33.3 36.2 34.1
Swedish 32.0 32.0 35.7 31.4

Overall 34.8 34.8 35.5 35.2

(c) UAS results using projected POS tags and only
instances in which an aligned token was found for every
word in the language line.

Classifier Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 38.6 38.6 37.4 37.4
German 40.3 40.3 44.4 40.8
Indonesian 26.0 26.0 27.3 28.2
Italian 35.7 35.7 39.7 35.7
Portuguese 33.0 32.8 32.0 34.7
Spanish 29.9 30.0 28.6 30.6
Swedish 29.4 29.4 35.7 35.5

Overall 34.1 34.1 35.8 35.5

(d) UAS results using classifier-produced POS tags
and only instances in which an aligned token was
found for every word in the language line.

Table 7.10: UASs for parsers trained on the automatically enriched data from all available
instances in Odin for that language, using POS tags that were either projected using the
given alignment method or produced by the gloss-line classification method. Evaluation was
done on sentences from the UD-2.0 evaluation corpus that were ten words in length or
shorter.
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differences between the IGT instances and the longer newswire sentences. As discussed in

Lewis and Xia (2008), there could be an IGT-Bias; that is, given IGT’s purpose in illustrating

unusual phenomena, the IGT data may be biased toward unrepresentative examples. The

longer newswire sentences may also simply differ by virtue of their length—longer sentences

may include subordinate clauses with different syntactic structures than are encountered in

the typically short IGT instances.

Whatever the cause of the degraded performance, it appears that, for the case when eval-

uation is performed on UD-2.0 data instead of XL-IGT data, selecting instances which are

fully aligned between language and gloss lines results in improvements for every alignment

method when averaged across the languages. Among these results, the highest perform-

ing system uses heuristic alignments, projected tags, and only fully aligned instances – all

methods that favor precision over recall in other settings.

Results on UD Data, All Sentences

Table 7.11 shows the results for the final monolingual parsing experiment, again using the

UD-2.0 corpus for evaluation, but this time using all sentences, regardless of length. Here

we see the lowest UASs of any of the monolingual experiments, as we have moved not only

out-of-domain, but also into a corpus where the average sentence length is now 21.8 tokens,

rather than the 4.8 of the Odin corpus. The system that performs the best among these is

again the system that achieved the best results for the short sentences, fully aligned instances

using heuristic alignment and projected tags, though the UAS of 22.4% is much lower.

7.5.4 Analysis

While the results achieved by these monolingual dependency parsing approaches may be

seen as somewhat disappointing, particularly for sentences of unconstrained length, such

multilingual dependency parsing is still very much an unsolved problem. Recent work such
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Projected Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 23.1 23.4 16.7 20.0
German 28.8 28.8 23.0 29.4
Indonesian 14.9 14.9 8.2 17.9
Italian 20.5 22.0 16.8 20.6
Portuguese 19.3 22.6 13.3 20.4
Spanish 26.0 25.7 21.9 21.1
Swedish 16.2 16.2 9.7 17.3

Overall 22.3 23.0 16.8 20.8

(a) UAS results using projected POS tags and all
instances, regardless of how many words in the in-
stance were aligned.

Classifier Tags – All Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 22.1 22.3 21.4 20.6
German 28.4 28.3 25.6 27.7
Indonesian 9.9 9.9 16.0 17.5
Italian 22.4 21.9 19.6 20.8
Portuguese 18.9 17.5 17.9 17.4
Spanish 22.2 24.1 17.9 18.4
Swedish 18.4 18.4 16.6 17.5

Overall 20.8 21.0 19.3 19.5

(b) UAS results using classifier-produced POS tags
and all instances, regardless of how many words in
the instance were aligned.

Projected Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 23.2 23.2 22.7 20.9
German 28.4 28.4 29.3 28.6
Indonesian 13.6 13.6 20.1 18.3
Italian 20.8 20.8 19.3 18.8
Portuguese 22.5 21.6 22.0 20.5
Spanish 24.4 26.8 27.9 26.5
Swedish 19.1 19.1 20.5 17.5

Overall 22.6 23.1 23.9 22.4

(c) UAS results using projected POS tags and only
instances in which an aligned token was found for every
word in the language line.

Classifier Tags – Fully Aligned Instances

Stat
Stat

+Heur
Heur
−POS

Heur
+POS

French 24.2 24.2 24.6 21.3
German 26.7 26.7 28.2 28.2
Indonesian 14.9 14.9 19.0 17.6
Italian 19.9 19.9 21.1 19.9
Portuguese 17.6 17.6 17.1 15.7
Spanish 19.0 18.6 19.2 19.1
Swedish 18.6 18.6 20.3 18.4

Overall 20.3 20.2 21.0 19.6

(d) UAS results using classifier-produced POS tags
and only instances in which an aligned token was
found for every word in the language line.

Table 7.11: UASs for parsers trained on the automatically enriched data from all available
instances in Odin for that language, using POS tags that were either projected using the
given alignment method or produced by the gloss-line classification method. Evaluation was
done on all sentences from the UD-2.0 evaluation corpus.
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as Xiao and Guo (2015), using millions of parallel sentences available in the Europarl corpus

(Koehn, 2005) to produce word alignments and project DSs still achieves a best result of

59.7% average over the eight language pairs covered for sentences of all lengths, and 65.8%

for sentences of fewer than ten words. While this is still a great deal higher than the 25.0%

and 40.6% seen in the equivalent experiments above, the approach given here is also working

with far fewer resources. Additionally, if it is possible to limit the input to more simple

sentences such as those found in IGT, the 63.0% UAS achieved for this system is actually

fairly competitive, and available for such rare and resource-poor languages as Yaqui and

Hausa. In the latter cases, the choice otherwise would be to develop no system at all.

7.6 Summary

In this chapter, I presented five dependency parsing approaches using IGT as training data.

The first projection-based approach in System 1 was improved on by subsequent Systems

3 and 4. While these systems outperformed either a parser trained solely on the projected

trees or the projection alone, they both relied upon some manually corrected trees to achieve

this boost, and required IGT data to parse. System 2, the baseline statistical parser trained

directly on IGT data performed extremely poorly, and thus was similarly improved by the

enhanced parsers in Systems 3 and 4. System 5 presented a parser which utilized the word

alignment system from Chapter 5 and the POS tagging systems from Chapter 6 to generate

training data from IGT instances that could then be used on monolingual input data. The

results of System 5 were disappointing, but this system is the result of sparse data as well

as noisy data, which causes compounding errors through the model pipeline. Future work

on other parsing approaches, as well as the data cleaning and expansion of Odin under the

RiPLes project may improve the performance of these methods substantially.



154

7.7 Further Work

As the monolingual parsing results show, there is still clearly room for improvement. Below

are a few possible paths to follow for future work.

7.7.1 Additional Data Cleaning

Although it will possibly sound a bit repetitive at this point, the dependency parsing results

demonstrated in this chapter are the result of a pipeline that combines word alignment,

part-of-speech tagging, and dependency projection, all of which are independently affected

by pdf-to-text corruption found in the original source data. At the end of the pipeline, the

compounding errors are certain to have a substantial impact on the resulting performance

of the system. Reducing noise by discarding instances also sacrifices the amount of available

training data. Better approaches to reconstructive cleaning could help reduce noise while

maintaining the maximum amount of training instances.

At the time of writing, the RiPLes project is currently working on improving and ex-

panding the source data for Odin by reprocessing the data with an improved pdf to text

extractor on both the old documents, and a large number of new documents. When that

work is complete, it is possible that the systems outlined here may see substantial gains

just by use of the new data. Given that the software I created for this thesis will be avail-

able online, this expanded Odin data should be able to bootstrap new, improved systems

immediately once available.

7.7.2 Use Modified Parser Model

As shown in previous sections, lack of alignments can be a cause of error when attempting

to project DSs, and heuristic methods to reattach unaligned words do not appear to result

in trees that are particularly well suited to training subsequent parsers. One possible avenue

would be to create a modified DS parser, following Spreyer and Kuhn (2009), where the
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trees created by the initial projection need not be complete. Instead, the modified parsers

use a modified score for calculating likely dependency links during training such that only

dependencies that arise from sure alignments are used. Such a modification could reduce

errors caused by unaligned words that were incorrectly reattached during projection.

7.7.3 Similarity-Based Approaches

Finally, one of the weaknesses of IGT remains its sparsity. Another path for future research

would be a variety of approaches that focus on expanding the coverage of category identi-

fiers for unseen data, whether through clustering based on part-of-speech tags (Koo et al.,

2008) or more general lexical similarity features (Mirroshandel et al., 2012). In particular,

these approaches would help supplement a failing of the systems produced by projection

with IGT, in that there is a large data sparsity issue for the open-class words. As Mir-

roshandel et al. noted, even for supervised parsers trained on several thousand sentences,

performance is greatly improved on open-class words. In conjunction with improved POS

induction and word alignment, OOV rates for POS tagging these approaches could be greatly

reduced, which is one of the key weaknesses of IGT-based systems. This improved tagging

for previously unknown words would in turn inform the parser, leading to improved parsing

accuracies as well.
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Chapter 8

INTENT: THE INTERLINEAR TEXT ENRICHMENT
TOOLKIT

The INterlinear Text ENrichment Toolkit, or Intent, is the code package I wrote that

implements the IGT enrichment methods presented in this thesis. The following resources

are available:

Code https://github.com/rgeorgi/intent

Annotated IGT Data https://github.com/rgeorgi/xigt-data

As I will be distributing this package for any researcher who wishes to use it under

the MIT license, I will use this chapter to give an overview of the software and the main

commands that can be used, though more complete and up-to-date documentation can be

found at the URLs above.

INTENT v1.0

enrich stats

split

filter

extract

project

Enrichment Tools Corpus Tools

eval

text

repro
Test Tool

Figure 8.1: Overview of the modules of the Intent software package.

https://github.com/rgeorgi/intent
https://github.com/rgeorgi/xigt-data
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INTENT

enrich

Raw IGT

Enriched IGT

--align giza,gizaheur,
heur,heurpos

--pos class,proj,trans

--parse proj,trans

Figure 8.2: Flowchart demonstrating the primary arguments to the enrich command and
their options.

Figure 8.1 gives a brief overview of the primary modules contained within the overall

Intent package, while Sample 8.1 shows the main commandline prompt for Intent. These

subcommands are split over two primary tasks. The first group deals with enrichment of IGT

instances, while the second are utilities designed to deal with Xigt-XML corpora (Goodman

et al., 2014). I will describe the function of each module in the following sections.

8.1 enrich

Perhaps the most important command in the Intent package is the enrich command. The

enrich command, as illustrated in Fig. 8.2, provides three arguments to provide the enrich-

ment for word alignment, POS tagging, and dependency parsing and projection described in

Chapters 5 to 7. In addition to DSs, the --parse argument also supports phrase structure

parsing and projection.

The example in Sample 8.2 gives a commandline for running enrichment on a cmn.xml

Xigt-XML file, which would correspond to Mandarin Chinese in the Odin-2.1 data.
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usage: intent.py [-h]

{enrich,stats,split,filter,extract,eval,text,project} ...

This is the main module for the INTENT package.

positional arguments:

{enrich,stats,split,filter,extract,eval,text,project}

Valid subcommands

enrich Enrich igt data.

stats Get corpus statistics for a set of XIGT files.

split Command to split input file(s) into train/dev/test

instances.

filter Command to filter input file(s) for instances

extract Command to extract data from enriched \xigtxml{} files

eval Command to eval INTENT functions against a gold-

standard \xigtxml{}.

text Command to convert a text document into \xigtxml{}.

project Command that will (re)project pos/ps/ds using the

specified pos source and alignment type.

optional arguments:

-h, --help show this help message and exit

Code Sample 8.1: Main commandline usage prompt for Intent, with a list of all available
subcommands.
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intent.py enrich --align heurpos --pos proj,class --parse proj \

cmn.xml cmn-enriched.xml

Code Sample 8.2: Example enrichment command providing Heur+POS alignment, both
classifier-based and projection-based POS tagging, and DS and PS projections.

The --align argument selects a word alignment method to use in aligning the gloss and

translation lines from among giza, gizaheur, heur or heurpos. These settings correspond to

the Stat (Section 5.3.2), Stat+Heur (Section 5.4), Heur −POS and Heur +POS meth-

ods (Section 5.2) discussed previously. The --pos argument selects a POS tagging method

between class for classification (Section 6.3) , proj for projection-based (Section 6.2), or

trans, which tags only the translation line. The --parse argument similarly offers an op-

tion of proj to parse and project the DS/PS trees (Section 7.2), or trans to only parse the

translation line.

After the enrich command is run, it generates an output Xigt-XML document with the

requested enrichment, if possible. Some issues with the IGT data, such as lack of 1-to-1

gloss–language line alignment will cause enrichment involving the language line to fail, and

the instance will be left unenriched in the output.

For a user who would like only POS tags on Welsh (cym) with maximal precision, po-

tentially sacrificing recall, an appropriate command would be to enrich using only projected

tags aligned using the heuristic alignment:

intent.py enrich --pos proj --align heur cym.xml cym tagged.xml

Alternatively, a user who wants the maximum number of POS-tagged language line tokens

on Hausa (hau), and cares less about precision might use simply:

intent.py enrich --pos class hau.xml hau tagged.xml

http://www.ethnologue.com/language/cym
http://www.ethnologue.com/language/hau
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8.2 extract

The extract subcommand is the second-most important command in the Intent package,

in that it provides the mechanism by which to extract data from the enriched IGT. The

flowchart in Fig. 8.3 shows the extract subcommand’s various arguments, and the output

products that each generate. Unlike the enrich command, the extract command expects

that the provided Xigt-XML file already contains enrichment. This enrichment may be

generated from Intent itself, or from other sources, such as XigtEdit (Xia et al., 2016).

The --classifier-prefix argument uses POS tags found on the gloss-line tokens in the

enriched IGT instance to train a Mallet (McCallum, 2002) MaxEnt classifier (Berger et al.,

1996). The --tagger-prefix argument will use the POS tags found on language-line tokens

to train a Stanford Tagger POS tagging model (Toutanova et al., 2003). The --dep-prefix

will train a Stanford Parser model (Klein and Manning, 2003; de Marneffe and MacCartney,

2006) on projected dependency structures found on the language line.

The last two arguments are not used for purposes explored in this thesis, but would be

useful for other tasks. The --sent-prefix argument produces either language–translation

INTENT

extract --classifier-prefix

--tagger-prefix

Enriched IGT

--sent-prefix

--dep-prefix

--cfg-rules

Gloss-Line POS Classifier

Target Language POS Tagger

Target Language DS Parser

L/T or G/T Parallel Sents

Target Language DS Parser

enrich

Figure 8.3: Flowchart illustrating the extract command, and the possible outputs.
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or gloss–translation parallel sentences, with or without heuristic word-level matches, which

could potentially be useful in producing or improving a word alignment system between the

target language and English. The --cfg-rules will produce a list of CFG rules extracted

from phrase structures that have been projected to the language line, which could potentially

be analyzed to infer syntactic phenomena from a language. While I have not described the

phrase structure projection process in this paper, my projection algorithm follows that of

Xia and Lewis (2007).

Sample 8.3 gives an example of how the extract subcommand might be used to ex-

tract a product for a target language from an enriched Xigt-XML file. In this case, the

--tagger-prefix argument is given a german* filename prefix in the ./taggers subdirec-

tory, and will extract the language-line POS tags from the file deu-enriched.xml.

intent.py extract --tagger-prefix ./taggers/german deu-enriched.xml

Code Sample 8.3: An example commandline for the extract subcommand, which will pro-
duce a German POS tagger from the deu-enriched.xml file.

8.3 eval

The eval subcommand is used for evaluating performance of various Intent methods on

a Xigt-XML document containing gold-standard annotations. If gold-standard POS tags

are present, it can evaluate a gloss-line classifier using --classifier and a specified clas-

sifier file, as well as --pos-projection. If gold-standard word alignments are available,

--alignment can be specified to give a report of how the different alignment methods per-

form. If gold-standard DSs are present in the file, the --ds-projection argument will

evaluate ds projection against those.

The commandline in Sample 8.4 shows an example where the my_gloss.maxent file—

which can be extracted from an IGT with the extract subcommand—is evaluated against
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intent.py eval --classifier my_gloss.maxent fra-gold.xml

Code Sample 8.4: Example of an eval commandline.

intent.py project --aln-method heur --completeness 0.75 \

jpn-enriched.xml jpn-projected.xml

Code Sample 8.5: An example commandline for the project subcommand.

the fra-gold.xml file containing gold-standard gloss-line POS tags.

8.4 project

In many ways, the project subcommand is similar to the enrich subcommand in that it

produces enriched IGT. However, unlike enrich, project expects an already-enriched Xigt-

XML file that has word alignments and translation-line POS tags or DSs. Similar to the

extract subcommand, the input enriched Xigt-XML file need not have been generated by

Intent. This subcommand can be used for testing the projection algorithms with files that

provide gold-standard POS tags or word alignment.

The project subcommand takes two arguments, --aln-method, which selects the align-

ment method from the file to use in case there are multiple methods specified. Aside from

the four Intent methods, this argument may also select for manual word alignments or

any, which selects the first available alignment. Selecting any alignment may be required if

the metadata specifying the alignment type is not present in the file. The second argument,

--completeness, provides the option to only project the annotations from the translation

line if a given proportion of the words are aligned. This proportion is represented as a

decimal between 0 and 1, inclusive.

The example in Sample 8.5 will use the heur alignment method to project from the

translation line of the jpn-enriched.xml file, but only when at least 75% of the language
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line tokens can be aligned. The output will be written to jpn-projected.xml.

8.5 Corpus Management Subcommands

The stats, split, filter, and text subcommands are used as simple utilities for working

with Xigt-XML corpora, and I will discuss their functions only briefly here. The stats

command provides simple statistics on an Xigt-XML corpus file, consisting of counts of

instances and tokens as well as counts of unique words. The split command offers the

ability to split a corpus into train, dev, and test sets, with the ability to specify the estimated

proportion of tokens that should appear in each.

The filter subcommand can be used to filter Xigt-XML documents according to whether

the instances they contain do or do not have gloss, language, or translation lines (as some

instances are missing one or more), or whether or not they have one-to-one alignment be-

tween whitespace-delimited language and gloss tokens. Although Intent will attempt to

fail gracefully when an instance fails to meet the requirements for enrichment or extraction,

Intent will attempt to maximize the utility of every instance available. For example, only

a POS tagged gloss line is required to extract a gloss-line classifier. This may mean that

certain extracted systems may use more instances than others, depending on the approach.

For comparing systems based on a shared set of instances, it may be more appropriate to

pre-filter the Xigt-XML document.

Finally, the text subcommand can be used to convert plain text of Language, Gloss,

Translation lines separated by whitespace into a Xigt-XML document.

8.6 Reproducing The Experiments (repro)

An all-too common problem in the sciences is the difficulty in reproducing a set of experimen-

tal results. The repro subcommand seeks to address this problem by providing a built-in set

of scripts that reproduce the experiments detailed in this thesis, when used in combination
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Component Version Purpose

Python ≥3.4 Main codebase
Mallet ≥2.0 Classifier support
NLTK ≥3.0 Tree structure support
Xigt ≥1.0 Xigt Support
Java ≥8 Support for Mallet, Stanford Parser/Tagger
mgiza ≥0.7 Statistical Alignment
Stanford Parser ≥3.6.0 DS/PS parsing
Stanford POS Tagger ≥3.6.0 POS tagging

.

Table 8.1: Software requirements for Intent

with the data made available at the link above. The five options for the repro command

are ds-igt, ds-mono, pos-igt, pos-mono, and align. These commands reproduce the ex-

periments of the dependency structures and POS tagging experiments, both on IGT and

monolingual data, and the alignment methods.

8.7 Interfaces to Intent

While Intent was initially designed as a commandline tool, it quickly became apparent that,

due to the requirements of installing a python interpreter and several third-party software

packages for full functionality, this commandline interface might be too cumbersome for

many end-users to install, given the platform-specific dependencies (see Table 8.1 for a list

of required packages.)

In order to simplify usage for end-users, and additionally offer a basic query and submit

functionality, INTENT-WEB was developed as a web-based interface for common enrichment

tasks. Figure 8.6 shows a screenshot of INTENT-WEB using the Upload/Enrichment mode

to enrich an instance of German, with verbose output. This interface can be accessed at

http://intent.xigt.org/.

http://intent.xigt.org/
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8.8 Intent For Cleaning and Annotation

Another tool that makes use of Intent is a web-based IGT editor tool, that enables the

creation of manually-reviewed, gold-standard IGT data. This tool helps support the RiPLes

project (Xia et al., 2016)1 in providing a universal, browser-based interface for annotators

to easily work with Xigt-based IGT data. At the time of writing, cleaned and normalized

IGT data is the end product, with a visualization of the Intent-produced annotations, but

it is hoped that future modifications will add the ability for annotators to correct these

annotations. The current cleaning process improves IGT usability in the computational

approaches outlined in this thesis, as well as providing a means to create gold-standard data

that can be used to evaluate different automatic cleaning approaches.

Figure 8.7 gives an example of the basic editor interface, and its ability to provide access

to multiple corpora, as well as select different instances within each corpus. Additionally,

annotators may change the automatically detected TAG for a line, which identifies whether

an instance is a Language line, Gloss line, Translation line, or contains non-IGT Metadata.

Users can also tag each line with multiple labels, such as the LN shown in Fig. 8.7 that

indicates the Language Name.

Figure 8.8 shows where Intent is used more extensively in the interface, to perform the

automatic segmentation and some initial enrichment for the user to verify that the instance

has been cleaned appropriately for the automated methods to be functioning correctly. In

future releases, users will have the ability to correct the automatically generated enrichment,

in order to create gold standard corpora with minimal additional human effort.

8.9 Summary

While a great deal of the work involved in this thesis was creating the methods with which

the problems would be approached, Intent represents the bigger task of implementing those

1http://faculty.washington.edu/fxia/riples/

http://faculty.washington.edu/fxia/riples/
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methods, and making them available in a tool that users can apply to their own data. As

a researcher with interest in rare and endangered languages, my hope is that the release

of this software, along with the Odin-2.1 data and subsequent versions, will provide tools

with which other researchers may find the means to answer questions about or build tools

for many languages that have, up until this point, had little to no other resources available.

While Intent is by no means a comprehensive tool for all possible IGT-related tasks, I hope

that it makes the data format more accessible to a broader audience.
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INTENT

eval
--ds-projection

--pos-projection

Enriched IGT
(w/Gold Data)

--alignment

--classifier CLASSIFIER_FILE

Figure 8.4: Flowchart illustrating the eval command and its arguments.

INTENT

project

Enriched IGT
(w/Projections)

--aln-method giza,gizaheur,
heur,heurpos,
manual,any

--completeness 0.0—1.0

Enriched IGT

Figure 8.5: Flowchart illustrating the project subcommand and its arguments.
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Figure 8.6: The INTENT Web Interface running at the University of Washington’s Depart-
ment of Linguistics server.
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Figure 8.7: Overview of the XIGT editor interface for cleaning IGT instances. The editor
allows annotators to clean corruption from XIGT instances, normalize the data so that it is
ready for the automated methods of Intent and other systems, and provide a cleanliness
rating and other comments that are saved in the IGT instance metadata.
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Figure 8.8: INTENT-enriched information is automatically generated by the editor interface
for inspection by the annotator. Future releases will include the ability for annotators to
correct the enriched data, as well as view other information such as word alignment.
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Chapter 9

CONCLUSION AND FUTURE WORK

In this thesis, I sought to answer the question: can the existing language knowledge

contained in Interlinear Glossed Text be harnessed to perform basic NLP tasks on resource-

poor languages in a repeatable and broadly applicable manner? For my conclusions, I will

examine the answers that I found to this question, and suggest pathways for future studies.

9.1 Summary of Results

Word Alignment

Chapter 5 proposed two primary approaches to using the unique format of IGT instances

to align words between translation and language lines for the purposes of enabling many of

the subsequent methods through projection-based methods. The first of these methods was

a purely heuristic approach, taking advantage of the unique gloss line that IGT provides

to find tokens that matched between translation and gloss line. That “matching” could be

defined as literal string matches, a mapped set of grams, or words with matching POS tags.

The second approach utilized statistical alignment methods, but leveraged the thousands

of instances in the Odin database that reuse translation words and gloss words, regardless of

the language the instance is annotating. Thus, a language with only 10 instances would still

potentially have access to 151,623 other language-gloss sentence pairs with which to inform

alignment. This statistical method could be informed by the higher-precision, lower-recall

heuristic method to add heuristic matches to the alignment data.

Table 9.1 Experiments on these methods showed that the best-performing heuristic
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System Settings Precision Recall F-Measure

Heuristic
− POS 0.96 0.75 0.85
+ POS 0.86 0.83 0.85

Statistical
G-T (+ODIN +Heur) 0.89 0.78 0.83
L-T 0.47 0.51 0.49

Table 9.1: Summary of word alignment results on IGT instances in the RG-IGT corpus.
Heuristic alignment is shown with or without the POS tag matching heuristic, while the
statistical approaches are shown using either the augmented gloss/translation alignment (G-
T), or the language/translation alignment(L-T).

method achieved an F1-score of 0.88 on the RG-IGT corpus, and 0.86 on the XL-IGT corpus.

The best statistical approach showed results of 0.86 and 0.80 on the same datasets. While the

heuristic approach appears to outperform the statistical approach, these evaluation corpora

are very small, and both approaches appear to be good options for aligning IGT instances.

Furthermore, these results show that IGT instances are able to produce high-quality word

alignments even with very little data to align.

Finally, both alignment methods might be used to inform one another. The heuristic

approach was used to add high precision alignments to guide the statistical approach, while

a future path of research could be investigating using high-reliability statistical alignments to

create a translation ↔ gloss line translation dictionary as an additional alignment heuristic.

POS Tagging

Chapter 6 focused on two main tasks for obtaining POS tags for IGT instances. The first

used word alignment and a POS tagger trained on English to tag the translation line and

project those tags to the target language. This was the standard approach for projecting

a POS tagger in previous work, although this the work in this thesis was able to show

substantially higher performance than previous work when projecting POS tags within IGT
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Projection Classifier

Automatic Manual

66.8 84.3 92.9

Table 9.2: Summary of POS tagging accuracies on the RG-IGT corpus. Projected tags are
evaluated without special handling for unaligned words. The classifier approach is evaluated
either using tokens labeled by automatic projection or manually, with a 90/10 split and
tenfold cross-validation.

instances, due to the availability of high-quality word alignment.

The second method focused instead on the particular qualities of IGT, namely, the in-

formation encoded in the gloss line. Despite even high quality word alignment, unaligned

words or incorrectly aligned words present a problem for projection methods, I posited the

approach of looking instead at the gloss line’s grammatical markers such as 3.SG.FEM and

using such markers as features in a classifier to predict the POS tag of the gloss token directly.

The results of this classifier could even be used as a preprocessing step to the word aligner to

find unaligned words with matching POS tags and attempt to align them to improve recall.

One further addition to the classifier-based approach was that rather than training the

classifier with a small collection manually-labeled gloss tokens, the classifier could be trained

with all of the gloss tokens for which heuristic alignments were available, thus greatly im-

proving coverage, if at the cost of introducing noise.

Table 9.2 shows the summary of the projection and classifier-based approach POS tagging

methods on the RG-IGT corpus. The projection approach achieved an accuracy of 66.8%

when using automatic alignments. The classifier approach on the same data achieved 92.9%

for the manually-labeled data and 84.3% for the automatically-labeled data. On IGT test

data, the classifier-based approach thus reduces errors over the projection-based approach

on by 79% with manually-labeled data and 53% with automatically-labeled data.

After either of these methods were run, the resulting IGT instances with POS-tagged
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Projection Classifier Supervised

Partial Full Automatic Manual 1K All Tokens

All Sentences 56.3 63.4 66.3 69.2 77.7 95.4
Short Sentences 62.7 65.5 69.5 70.4 74.9 94.1

Table 9.3: Table summarizing the overall POS tagging accuracies evaluated against the UD-
2.0 corpus. Tagger results using projected POS tags are shown allowing partially aligned
sentences, or only fully aligned sentences. Classifier approaches are shown with tokens labeled
via automatic projects as well as manually. Supervised approaches are shown using 1,000
tokens and all available tokens.

language-lines could thus be used as a source of training data for POS taggers in the target

language, the results of which are summarized in Table 9.3. Although it represented a shift

of domain from IGT, these approaches were used to tag IGT instances for the languages

in the UD-2.0 treebank. The best performing projection-based method and classifiers using

either automatically or manually labeled data achieved 63.4%, 66.3%, and 69.2% respectively.

While a fully supervised approach was able to achieve 95.4% accuracy overall, a supervised

approach utilizing a number of tokens comparable to those used in the IGT instances achieved

only 77.7% overall. Evaluating on sentences of only ten words or fewer, and thus more

comparable to the short sentences in IGT closed the performance gap even further.

This thesis presents a unique approach of training a classifier to work on the gloss line

of IGT, providing a method to obtain POS tags on the language line without requiring

alignment with the translation line. The system that results shows that while not directly

competitive with fully supervised methods, POS taggers can be created for over a thousand

languages with nothing more than IGT data that is freely available in Odin. Although

performance of the resulting systems are limited by the amount of IGT data available and

the cleanliness of said data, the RiPLes project is currently engaged in extracted more and

cleaner data for subsequent versions of Odin.
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Alignment

Source DS
G-T

(+ODIN)
G-T

(+ODIN +Heur) Heuristic
Heuristic
(+POS) Manual

Parser 63.8 63.7 55.5 64.1 69.1
Manual 72.6 72.6 61.9 71.2 81.0

Table 9.4: Summary of dependency structure projection UASs on the XL-IGT corpus with
various alignment sources, and with source DSs generated either manually or by a parser.

Dependency Parsing

In Chapter 7, I addressed the task of dependency parsing in a number of potential settings.

The first was to project DS trees using IGT-based word alignments similar to the initial

approach used for the POS tagging experiments. When projections were performed using

a parser and automatic alignments, as Table 9.4 shows, the Unlabeled Attachment Score

(UAS) was 64.1% on the XL-IGT corpus. Using gold-standard trees and manual alignments,

the results were as high as 81.0%.

The next approaches looked at two different ways of using a small set of manually cor-

rected trees to improve the dependency parses produced by these projections, the results of

which are summarized in Table 9.5. The first of these extended approaches took a set of

projected trees for the target language and had an annotator manually correct them. Then,

a parser was trained that had been modified to use the suggested projected edges as a fea-

Unimproved Projections Improved Projections

Parser + Projection 88.4 89.3
Projection 84.3 88.0
Parser 67.3

Table 9.5: Summary of Unlabeled Attachment Scores (UASs) for dependency parsing on
the XL-IGT corpus.
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ture, and tested against unseen IGT instances. In this setting, the combined parser was able

to improve from the projection-only 81.0% to 88.4%, a 39% reduction in error, and a 66%

reduction in error over the 65.8% of the baseline parser that did not use the projected trees.

The second approach took the same set of manually corrected trees and compared them

against the English parse trees using a set of defined tree comparison operations. I used these

tree comparison operations to measure the structural differences between languages, and used

these statistics to develop a method for rewriting the dependency structures post-projection.

Finally, as with the POS tagging task, once an IGT instance has projected dependency

structures available for the target language, these structures can be used to train a monolin-

gual dependency parser. While it is exciting to potentially be able to generate a monolingual

dependency parser using nothing more than IGT data, the results on this monolingual pars-

ing task were less promising. When the language-line sentences in the IGT were used for

evaluation, the best-performing system, using statistical alignments, and POS tags projected

with all available instances, achieved 63% UAS. Heuristic alignment performed uniformly

poorly, though heuristic alignment combined with POS tags was competitive with the sta-

tistical methods. This result suggests that for the dependency projection task a higher recall

method is preferable to a system that emphasizes only precision.

When the monolingual parsing target was moved from IGT instances to the newswire text

in the UD-2.0 corpus, however, performance dropped such that the best performing system

achieved only 36.5% UAS on sentences of ten words or fewer, and 23.9% overall. While

disappointing, these figures are still for a system dealing with a great many compounding

errors and noisy data. While it does not yet compete against state-of-the art systems for

resource-rich languages with high-quality annotated training data, my system is able to

produce parsers for languages for which existing state-of-the-art systems do not have sufficient

data to train against. Even with less than optimal performance, the produced parses can

still serve to reduce labor in treebank creation by producing parses which can be corrected
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Corpus IGT UD-2.0

Sentences All ≤10

All Alignments 63.0 20.8 34.5
Full Alignments 62.9 22.6 34.8

Table 9.6: Summary of dependency parsing results, both evaluated against the combination
of RG-IGT and XL-IGT corpora (IGT) and on the UD-2.0 corpus. For the UD-2.0 corpus,
the parsers were evaluated against all sentences, and sentences with ten words or fewer.

with less effort than starting from scratch.

In answer to the research question for the dependency parsing task, I found that IGT can

indeed produce parse trees repeatably and broadly for resource-poor languages, though the

quality of these trees is of more usefulness in an active-learning system than as end products.

9.2 Contributions of This Work and Potential Uses

Overall, this thesis constitutes a major step in providing tools for languages for which pre-

viously no electronic resources were available. With IGT data available for approximately

1,500 languages currently in Odin, the methodology presented here provides the means to

quickly and automatically enrich these raw IGT instances. This is a substantial development,

and opens up a number of tasks that can now be accomplished on languages for which these

tasks previously would have been impossible.

Word Alignment and Machine Translation Although I discussed obtaining word

alignment for IGT instances using the Intent software, the word pairs that are extracted

from the IGT instances using the various alignment methods the package provides can be

used to seed the translation dictionaries for languages for which some amount of parallel

data is available. While this approach will not guarantee high-quality word alignment, it

might help improve alignment quality and thus translation quality for languages where a
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small amount of parallel data exists, just not the amounts typically used for MT systems.

For languages where data is scarce, even modest improvements in MT output can be highly

impactful.

Typological Studies Also implemented in the Intent software is the ability to project

and extract CFG rules from phrase structures. While the projection process might be noisy,

the CFG rules, if filtered appropriately, or analyzed for statistically significant patterns,

could be used to infer interesting syntactic properties over the 1,500+ languages in the

Odin database. Additionally, using the POS tags generated on the gloss line by the classifi-

cation POS-tagging approach to identify nouns and verbs could be used along with gloss-line

grammatical markers to attempt to detect whether a language has accusative or ergative

alignment, or is something else entirely. Indeed, this type of typological inquiry is one of the

goals of the AGGREGATION project1, as discussed in Bender et al. (2014).

In addition to the editor interface described in Section 8.8, the enriched data provided

by Intent for Odin v2.1 will soon be included in a search interface that will allow linguists

to search for typological characteristics of a language as represented in the enriched data.

Treebank/Resource Creation While the automated approaches described in this the-

sis are able to function independently of additional expert knowledge, data that has been

cleaned and vetted by a language expert are valuable not only for training higher-quality

systems than automated approaches are capable of, but also for evaluating systems in a given

language. One of the immediately useful uses for which the systems in this thesis may be used

is for improving the speed and ease of treebank and resource creation. Though not currently

implemented in the editor interface, the ability for users to correct the Intent-produced

annotations would essentially turn IGT data into the source for an active-learning system,

1Automatic Generation of Grammars for Endangered Languages from Glosses and Typological Informa-
tion, http://depts.washington.edu/uwcl/aggregation/

http://depts.washington.edu/uwcl/aggregation/
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potentially producing word-aligned and POS-tagged parallel treebanks for previously un-

available languages. It is even possible that were the correction task to made simple enough

for native, non-linguist speakers, this Intent-aided correction task could be crowdsourced,

creating new gold-standard resources for future studies.

Other Impacts These are only a few ways in which Intent can be used at present. My

research also had a number of findings about IGT as a resource more generally.

Significantly, my research also shows that although a single resource-poor language may

only have a handful of IGT instances available in Odin or other sources, Intent can use

IGT instances from other languages to improve improve performance on word alignment and

POS tagging tasks. Thus, as Odin is expanded with more, and cleaner, data, the resulting

Intent systems should improve, both by incorporating more training instances for languages

in Odin, but also by obtaining more cross-linguistically useful data.

Furthermore, the work done in this thesis contains, as far as I am aware, the first published

results of a part-of-speech tagging system for a number of rare or endangered languages,

including Chintang, Hausa, Welsh, and Yaqui. Intent can generate similar systems for

any language with available IGT data. Only lack of the ability to evaluate such systems

prevented more results from being reported here.

This thesis has affirmed that IGT can indeed be harnessed as a computational resource

for a number of basic NLP tools. While these tools are simple, they may serve as the basis

for many other related tasks and provide a foundation to form typological queries over a

data source that covers over a thousand languages.

9.3 Future Work

This thesis represents a major advance in the domain of resource-poor language tool devel-

opment, though there naturally remain many paths yet available for further research.
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Word Alignment For the word alignment task, there are two promising experiments that

could be taken as the next steps to the work given here. First, the work of Gao et al. (2010)

uses high-precision “known” word alignments within a sentence pair to constrain the sta-

tistical alignment search to be consistent with those known links. Using the high-precision

heuristic alignments with this aligner to align IGT instances would impose a stronger con-

straint on the statistical alignment approach than is currently done by adding the extracted

heuristic matches as additional sentence pairs, hopefully improving precision of the statistical

approach while benefiting from the improved precision.

With respect to non-IGT data, the parallel text that Intent is able to extract from IGT

instances in the form of both the parallel sentences and translation lexicons could potentially

be used to boost performance of an existing statistical alignment system for which parallel

data is available, but perhaps limited.

POS Tagging For the part-of-speech tagging task, while the coverage of IGT appears

limited, the potential for high-quality, but sparse POS-tagged data seems to be well-suited

for a number of semi-supervised approaches. The prototype approach of Haghighi and Klein

(2006a) seems particularly appropriate for this task, although the noise of IGT data and its

sparsity might make extracting prototypes that are truly representative of the word class

difficult. Similarly, attempting to model ambiguity classes as in Toutanova and Johnson

(2007) sounds promising, but again the noise and sparsity in IGT might be a limiting factor

in how viable the extracted distributions for such ambiguity classes might be.

Dependency Parsing Dependency parsing was the task that was found to be the most

difficult. One of the possible reasons for this was the nature of attempting to project complete

DSs when alignment information was imprecise, and unaligned words were attached using

best-guess heuristics. One potential path to take to solve this issue is to follow the work

of Spreyer and Kuhn (2009), and focus exclusively on precision rather than completeness.
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Using Spreyer and Kuhn’s approach, partially projected trees could be used to train a parser,

and thus the parser trained on the projected IGT data need only consider correctly projected

edges as ground truth, rather than those attached heuristically, which are far more likely to

be erroneous.

Cleaning Ultimately, one of the biggest limitations in working with the version of IGT

data that was available was data cleanliness. All the enrichment-related tasks depend on

clean IGT instances, and while effort was made to automatically clean and normalize the

instances as much as possible, a great deal of noise remains. As the enrichment progresses

from basic word alignment to shallow POS tagging, to deeper dependency parsing, errors

caused by this noise compound, negatively and increasingly impacting performance. Current

work with the RiPLes is focusing on producing new, cleaner data for Odin. With future,

cleaner versions of IGT instances, many of the methods detailed here may see substantial

improvements without any further investment.

9.4 Conclusion

This thesis has presented an integral step toward a much greater broadening of language

resources involved in the field of natural language processing. While the tasks presented here

are limited, the methods used here could easily be adapted. Chapter 6 focuses on the task of

POS tagging, but the methods described could be used to project Named Entity Recognition

(NER) in the same manner. Similarly, the dependency structures from Chapter 7 represent

one form of shallow parsing that could also be used for Semantic Role Labeling (SRL).

The word alignment methods from Chapter 5 focus on obtaining alignments within the

IGT instances to assist the other tasks in the thesis, but these alignments could be used

to extract translation lexicons that would be useful for a wide variety of bilingual tasks,

including machine translation.

It is hard to picture a time when computational resources are available for all the lan-



182

guages of the world. In the intervening time, broadly applicable methods such as those

presented here will remain valuable tools in the field of computational linguistics.
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Appendix A

TERMS AND VARIABLES

E English-language sentence

F Foreign-language sentence

C Corpus

Each corpus C contains pairs of sentences, and alignments between the words in each sentence.

C = {(F1, E1, A1) . . . , (Fn, En, An)}

Each sentence contains a single pair of sentences, and an alignment.

c = (F,E,A)

Each sentence contains a set of words W , a set of edges T , and a set of POS tags P .

F = {WF , TF , PF} E = {WE, TE, PF}

The set of words is just the tokens for each word in the sentence, while the edges are parent-

child pairs (with a special token w0 for the root node). The POS tags are represented also

as a set of pairs with the

word and associated tag, where p ∈ Tagset.

WF = {f1, f2 . . . fn} WE = {e1, e2 . . . en}

TF = {(fi, fj) . . . (fk, fl)} TE = {(ei, ej) . . . (ek, el)}

PF = {(fi, pj) . . . (fk, pl)} PE = {(ei, p) . . . (ek, p)}

Each alignment contains pairs of edges between the English and foreign-language words.

A = {(fi, ej), . . . , (fk, el)}

Finally, I define a relationship R that maps a word from one language onto a set of nodes

from the other.

RF→E(fi) = {ei . . . en|∀e, f((e, f) ∈ A)}
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RE→F (ei) = {fi . . . fn|∀e, f((e, f) ∈ A)}
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Appendix B

PSEUDOCODE

B.1 Projection

Algorithm B.1.1: Algorithm for projecting DSs from one language to another, fol-
lowing Quirk et al. (2005).

input : Source Sentence WE = {e1, e2, . . . en}
Source Tree TE = {(eci , epk ) . . . (ecj , epl )}
Target Sentence WF = {f1, f2 . . . fn}
Word Alignment AE→F = {(ei, fk) . . . (ej , fl)}

output : Projected Tree TF
1 begin
2 Let TF ← Copy(TE);
3 foreach (ec, ep) ∈ TF do

/* If the child is unaligned, delete it and promote its children, if it has any. */

4 if IsNotAligned(AE→F , ec) then
5 Remove(ec, TF ); // See Algorithm B.1.2

/* Otherwise, replace the source word with the target word it aligns with. If there are multiple target words that align with

this source word, each target word will be inserted as a sibling. */

6 else
7 foreach fc ∈ GetAlignedWords(AE→F , ec) do
8 DeleteFromTree(TF , (ec, ep));
9 InsertIntoTree(TF , (fc, ep));

/* After the initial replacement, target words that aligned with multiple source words may appear multiple times in the tree; remove

all but the shallowest. */

10 foreach f ∈ WF do
11 fnodes ← {(fc, fp) ∈ TF |fc = f}; // The set of nodes with f in them.

12 fdepths ← {Depth(TF , fc)∀(fc, fp) ∈ fnodes}; // The set of node depths.

13 foreach {(fc, fp) ∈ fnodes} do
14 if Depth(TF , fc) > min(fdepths) then
15 Remove(TF , fc); // Remove nodes deeper than the shallowest.

/* Finally, unaligned target words will be reattached. */

16 foreach {fi < fj < fk |IsAligned(AE→F , fi) ∧ IsAligned(AE→F , fk) ∧ IsUnaligned(AE→F , fj)} do
/* Attach to leftmost aligned node if no indices to the left of j are aligned. */

17 if |fi| = 0 then
18 InsertIntoTree(TF , (fj ,min(fk)))

/* Attach to rightmost aligned node if no indices to the right of j are aligned. */

19 else if |fk| = 0 then
20 InsertIntoTree(TF , (fj ,max(fi)));

/* If fi depends on fk or vice versa, attach to the lower of the two. */

21 else if (fk, fi) ∈ TF then
22 InsertIntoTree(TF , (fj , fk));

23 else if (fi, fk) ∈ TF then
24 InsertIntoTree(TF , (fj , fi));

25 return TF ;
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Algorithm B.1.2: Remove a token w from the tree T .
1 Algorithm: Remove(w, T )

input : T =
{
(wi, wj) . . . (wm, wn)

}
; // Input tree

input : w ; // Word to remove.

output : T ′ ; // Modified tree

2 begin
3 T ′ = T −

{
(w,wi)|wi = parent(w, T )

}
// Remove edge between w and parent wi

4 −
{
(wj , w)|w = parent(wj , T )

}
// Remove edges for children of w

5 +
{
(wj , wi)|wi = parent(w, T ), w = parent(wj , T )

}
;

/* Finish by ‘‘promoting’’ former children of w to now attach to w’s parent, wi. */

6 return T ′
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B.2 Dependency Tree Manipulations

Algorithm B.2.1: Calculating the percentage of matched edges in a corpus C.
input : A corpus C
output : CorpusMatchSrc→Tgt(C)

CorpusMatchTgt→Src(C)
1 begin
2 Let F → E matches = 0 ;
3 Let E → F matches = 0 ;
4 foreach (F,E,A) ∈ C do
5 Let F = (WF , TF ) ;
6 Let E = (WE , TE) ;
7 Let A = {(fi, ej), . . . , (fk, el)} ;

// Get matches for F → E

8 foreach
(
fc, fp

)
∈ TF do

/* If the child and parent in this edge align with the child→parent edge of the other

tree... */

9 if ∃ ec, ep : ep = parent(ec, TE)
10 and (fp, ep) ∈ A
11 and (fc, ec) ∈ A
12 then

// Increase the match count.

13
(
F → E matches

)
++;

// Get matches for E → F

14 foreach
(
ec, ep

)
∈ TE do

/* If the child and parent in this edge align with the child→parent edge of the other

tree... */

15 if ∃ fc, fp : fp = parent(fc, TF )
16 and (fp, ep) ∈ A
17 and (fc, ec) ∈ A
18 then

// Increase the match count.

19
(
E → F matches

)
++;

20 return Match(F → E) = 100×
(
F→Ematches

)
|TF |

;

21 return Match(E → F ) = 100×
(
E→Fmatches

)
|TE |

;
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Appendix C

POS TAGSETS

C.1 Chintang

Tag Universal Description

n NOUN a word that can denote a referent without derivation
pro PRON various words with deictic reference (presently not used consistently)

v, vi, vt VERB
a word that can serve as a predicate without derivation and that has
one agreement slot (vi) or two (vt)

adj ADJ
a word that can modify a head noun without derivation (only occurs
in Nepali)

predadj ADJ
a word that is mainly used as a predicate noun but can neither form
the head of an NP nor modify a noun without further derivation

adv ADV a word that can modify a predicate without derivation
num NUM a noun used for counting that can take numeral classifiers
gm PRT any kind of grammatical marker, dependent or independent
v2 VERB a dependent verb marking a grammatical function
interj PRT a word that regularly constitutes an utterance on its own

sound ADV
an adverb necessarily followed by =mo [CIT]; mostly but not always
indicates a sound

NoPOS X No POS tag provided

Table C.1: POS Tags used for the Chintang data (Section 4.1.6), (Bickel et al., 2009), and
their mapping to the universal POS tags given in Table 4.9.
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C.2 Hindi

Original Universal Description

NNP, NNPC NOUN Proper Noun (+Compound)
NN, NNC NOUN Common Noun (+Compound)
NST NOUN Noun denoting spatial relationship
PRP, WQ PRON Personal Pronoun (+Question)
DEM PRON Demonstrative
PSP ADP Postposition
VM VERB Main Verb
VAUX VERB Auxiliary Verb
RB ADV Adverb
RP PRT Particle
CC CONJ Conjunction (Subordinating & Coordinating)
QF ADJ Quantifier (e.g. lots, some)
QC NUM Cardinal (two, three)
QO NUM Ordinals (first, third)
INTF ADJ Intensifier
INJ PRT Interjection
RDP PRT Reduplication
ECH PRT Echo Words
NEG ADV Negative
UT VERB Quotative
SYM X Special Symbol
JJ ADJ Adjective
PUNC . Punctuation

Table C.2: POS tags used in the Hindi-Urdu-Treebank Project (Section 4.1.5) (Bhatt et al.,
2009), and their mapping to the universal POS tags given in Table 4.9.
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Appendix D

DEFINITIONS OF TERMS AND INDEX
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Definition of Terms

gram A token of gloss-line annotation used to mark a grammatical feature of a token, such

as inflection or case. e.g. ‘3sg’ for third-person singular, or NOM for nominative case,

following Bybee and Dahl (1989). 26, 28, 58, 72, 73, 191

projection Using annotation from tokens on language and alignment with those from an-

other to “project” the annotation from the source language onto the other. 25, 71

subword Any element, gram or word, that is contained within a single whitespace-delimited

gloss-line token. iii, 58, 73, 84, 88, 91
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Tibor Laczkó. 2002. Control and complex event nominals in Hungarian. In Miriam Butt and

Tracy Holloway King, editors, Proceedings of the LFG02 Conference. CSLI Publications.

M. Paul Lewis. 2009. Ethnologue: Languages of the World . SIL International, 16th edition.



202

Philip M. II Lewis and Richard E Stearns. 1968. Syntax-directed transduction. Journal of

the ACM (JACM) 15(3):465–488.

William D Lewis. 2006. ODIN: a model for adapting and enriching legacy infrastructure.

In 2006 Second IEEE International Conference on e-Science and Grid Computing (e-

Science’06). IEEE, Amsterdam, Netherlands, pages 137–137.

William D Lewis and Fei Xia. 2008. Automatically identifying computationally relevant

typological features. In Proceedings of the Third International Joint Conference on Natural

Language Processing . Hyderabad, India.

William D Lewis and Fei Xia. 2009. Parsing, projecting & prototypes: repurposing linguistic

data on the web. In 12th Conference of the European Chapter of the ACL. Association for

Computational Linguistics, Athens, Greece, pages 41–44.

William D Lewis and Fei Xia. 2010. Developing ODIN: A multilingual repository of annotated

language data for hundreds of the world’s languages. Literary and Linguistic Computing

25(3):303–319.

Marco Lui, Jey Han Lau, and Timothy Baldwin. 2014. Automatic detection and language

identification of multilingual documents. Transactions of the Association for Computa-

tional Linguistics 2:27–40.

Gideon S Mann and Andrew McCallum. 2008. Generalized expectation criteria for semi-

supervised learning of conditional random fields. In Proceedings of the 46th Annual Meeting

of the Association for Computational Linguistics . Columbus, OH, USA, pages 955–984.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large

annotated corpus of English: the Penn treebank. Computational Linguistics 19(2):313–

330.



203

Andrew Kachites McCallum. 2002. MALLET: a machine learning for language toolkit.

http://mallet.cs.umass.edu.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan

Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia
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