
PROJ ECT N OTES

Capturing divergence in dependency trees to improve
syntactic projection

Ryan Georgi • Fei Xia • William D. Lewis

Published online: 16 October 2014

� Springer Science+Business Media Dordrecht 2014

Abstract Obtaining syntactic parses is an important step in many NLP pipelines.

However, most of the world’s languages do not have a large amount of syntactically

annotated data available for building parsers. Syntactic projection techniques

attempt to address this issue by using parallel corpora consisting of resource-poor

and resource-rich language pairs, taking advantage of a parser for the resource-rich

language and word alignment between the languages to project the parses onto the

data for the resource-poor language. These projection methods can suffer, however,

when syntactic structures for some sentence pairs in the two languages look quite

different. In this paper, we investigate the use of small, parallel, annotated corpora

to automatically detect divergent structural patterns between two languages. We

then use these detected patterns to improve projection algorithms and dependency

parsers, allowing for better performing NLP tools for resource-poor languages,

particularly those that may not have large amounts of annotated data necessary for

traditional, fully-supervised methods. While this detection process is not exhaustive,

we demonstrate that common patterns of divergence can be identified automatically

without prior knowledge of a given language pair, and the patterns can be used to

improve performance of syntactic projection and parsing.

Keywords Multilingualism � Translation divergence � Syntactic projection

R. Georgi (&) � F. Xia

Department of Linguistics, University of Washington, Box 352425, Seattle, WA 98195-2425, USA

e-mail: rgeorgi@uw.edu

F. Xia

e-mail: fxia@uw.edu

W. D. Lewis

Microsoft Research, Bldg 99, 14820 NE 36th St, Redmond, WA 98052-6399, USA

e-mail: wilewis@microsoft.com

123

Lang Resources & Evaluation (2014) 48:709–739

DOI 10.1007/s10579-014-9273-4



1 Introduction

When it comes to resources for natural language processing, a small handful of

languages account for the vast majority of available resources. Out of the resources

listed by the Language Resource and Evaluation (LRE) Map (Calzolari et al. 2012),

English accounts for 30 % of all recorded resources, and the ten most resourced

languages account for 62 %. A broad variety of tools are available for these

resource-rich languages, since the time and effort spent to annotate resources for

them allows for state-of-the-art systems to be built utilizing supervised and semi-

supervised methods.

The availability of such resources does not come at a low cost; they are the result

of a large investment over many years on a per-language-basis. Because creating

high-quality annotation is expensive and labor intensive, the vast majority of the

world’s languages lack such resources and, likewise, high-performance NLP tools.

To address this issue, recent studies (Lewis and Xia 2008; Benajiba and Zitouni

2010; Georgi et al. 2012) have investigated using bitexts in which one half of the

bitext is a resource-rich language. In this paradigm, existing tools for the resource-

rich language can be used to process one side and project the information to the

other (the resource-poor language) via word alignments.

While projecting annotation from one language to another is a promising method

for adding annotation to languages using automated methods, it relies on the

assumption that simple word alignments between languages are sufficient to

represent analogous meanings and structures between the languages. For reasons we

will discuss in the following sections, this assumption is useful, but often erroneous.

Finding out whether and when this assumption fails for a given language pair is

not easy without knowledge about the two languages. It would be useful if, given a

small set of seed data, a language pair could be analyzed to find where and in what

ways the languages diverge, and use these detected patterns as corrective guidelines

for improving projection on other sentences for the language pair.

In this paper, we propose a method for analyzing a language pair and determining

the degree and types of divergence between two dependency trees in the two

languages. We then use this systematic identification of divergence types to inform

and correct the trees produced by syntactic projection. Using these improved trees,

we are able to boost the performance of a dependency parser by adding new features

extracted from projected trees.

2 Background

While there is a growing body of work on projection methods as a means to

bootstrap resources for one language from another, there are not many studies on

how to handle the issue of linguistic divergence between these languages. In this

section, we provide a brief review of work on divergence and projection algorithms.

We will also introduce interlinear glossed text (IGT), a common format used by

linguists to represent language examples (Lewis 2006).

710 R. Georgi et al.

123



2.1 Projection methods

Projection algorithms have been the target of a fair amount of research in the last

decade, as attempts have been made to utilize statistical alignment methods to match

words between languages with parallel data and ‘‘project’’ annotations between them.

Figure 1 shows an example bitext in the form of an IGT, while Fig. 2 shows how this

data may be used to project a dependency tree from English to Hindi.

Some of the initial research on the subject of projecting word-level annotation

from one language to another was published in Yarowsky and Ngai (2001). Here,

the authors used IBM Model 3 (Brown et al. 1990) to align large parallel corpora in

English–Chinese and English–French. A part-of-speech (POS) tagger was trained

for French using projections from English, and noun phrase (NP) bracketers were

trained similarly for both French and Chinese. The authors identified noisy

statistical alignment and 1-to-many alignments as two main issues affecting the

performance of projection. The first of these issues is a difficult problem for

resource-poor languages, as high-quality statistical word alignment often requires

much more bitext than might be available for the language. While it is not a full

solution to the problem, many of the language pairs we use in this work are drawn

from collection of IGT instances, as shown in Fig. 1, which provide unique shortcuts

for obtaining word alignments with a small amount of data. IGT will be discussed

further in Sect. 2.2.

The second issue, 1-to-many alignments, may be the result of linguistic

divergence in a language pair where the language being projected from is

morphologically richer than the other. In cases such as this, finding common

patterns of conflation can be useful for generalizing a projection to new data. For

instance, Fig. 3 shows a very simple but common case of conflation in the

SMULTRON corpus (Volk et al. 2010), where a single German word aligns to

multiple English words. Using this one-to-many alignment, the same POS tag would

be projected to both English tokens. In this case, using a universal tagset such as

those presented by Petrov et al. (2012), could help alleviate the problem, but for

more complex cases, learning the pattern would be more critical.

Hwa et al. (2004) investigated the issues in using projection between languages

in order to develop and train syntactic parsers, and described the Direct

Correspondence Assumption (DCA), the assumption made in projection algorithms

that the target language tree should be homomorphic with the source language tree.

While useful, this assumption often does not hold, as the authors pointed out. In

order to fix some of the errors made by faulty projections, Hwa et al. used an

approach that applies post-projection correction rules. For projection from English

to Spanish, the accuracy of the projected structures increased from 36.8 to 70.3 %.

The accuracy of the English to Chinese projection increased from 38.1 to 67.3 %.

While these language-specific rewrite rules are promising, they still require

language-specific knowledge. What we seek to accomplish in this paper is a general

framework for automatically detecting this divergence, both in specific language

pairs and its frequency throughout a large number of languages. With the use of this

automated divergence detection, it may be possible to learn these rewrite rules from

a small annotated corpus and use them to improve projection algorithms.

Capturing divergence in dependency trees 711

123



2.2 Interlinear glossed text

As mentioned in the preceding section, much of the data for our experiments was

drawn from the unique IGT data type. IGT instances are a common way for linguists

to give illustrative examples for a language being studied. Figure 1 shows an

instance of IGT for Hindi. As with this example, an IGT instance typically has three

lines: a language line, a word-to-word or morpheme-to-morpheme gloss line, and a

translation line. The translation line is typically in English, the language of the

research paper from which the IGT is extracted. Of special interest in IGT instances

is the middle gloss line, which gives a word-by-word gloss of the original language.

By design, the alignment between the language and gloss lines is monotonic and

one-to-one, thus providing easy matches between these two lines. The matching of

words between the gloss and translation can be utilized to obtain high-quality,

automatic word alignment between the sentences in the language pair without the

need for the much larger amounts of data typically required by statistical alignment

algorithms.

In Lewis and Xia (2010), IGT data for seven language pairs was automatically

aligned, projection performed, then finally hand-corrected to create gold standards

with minimal manual intervention. They showed the potential for using IGT as a

resource for languages for which finding resources would otherwise be extremely

difficult or impossible to obtain. We will use this data for the current work. A

breakdown of the language pairs can be seen in Sect. 4.1.

Lewis and Xia (2008) used projected phrase structures to determine the basic

word order for 97 languages using a database of IGT instances. By using the

alignment method described above and projecting phrase structures from English to

the foreign language line, the word order in the foreign language could be inferred.

For languages with just 10–39 IGT instances, the accuracy of predicting basic word

order was 79 %; with more than 40 instances, the accuracy jumped to 99 %.

Figure 4 gives a high-level view of a basic syntactic projection system that uses

IGT as the source of projection. Using the IGT as a source, we extract sentences in

the foreign language (F) and English (E), as well as word alignment between F and

E via the gloss line. Then the E sentence is parsed and the parsed tree is projected to

the F side via word alignment and heuristics. Section 3.5 will discuss learning and

applying corrections to projected trees, while Sect. 3.6 will describe a system that

bootstraps a parser using the projected systems.

Fig. 1 An instance of interlinear glossed text (IGT) for Hindi, with a gloss line and translation in English.
The word alignment between the gloss and translation lines is not part of the IGT instance, but it can be
produced by a statistical word aligner trained on bitext or an aligner that uses heuristic rules

712 R. Georgi et al.

123



2.3 Linguistic divergence

The previously mentioned studies illustrate the promise of projection for

bootstrapping new tools for resource-poor languages, but one limitation is their

reliance on the assumption that syntactic structures of the two sentences in a given

sentence pair are similar. While Hwa et al. ’s DCA describes the assumption made

for projection, Dorr (1994) makes a deeper analysis of divergence in languages.

Dorr outlined lexical conceptual structures (LCS) that provide a general framework

to describe these exceptions to the DCA. This framework is capable of representing

divergence stemming from syntactic, lexical, or semantic differences, but for the

purposes of this paper we will focus primarily on those that are lexical and syntactic.

Our goal in this work is to create a methodology by which these common types of

divergences can be detected automatically from bitexts in order to improve the

performance of existing structural projection methods.

(a)

(b)

Fig. 2 A simple example of syntactic projection as performed on the IGT instance in Fig. 1. (a) Using
the interlinear instance from Fig. 1, the English text is parsed. (b) Using the word alignments from Fig. 1,
the tree structure and POS tags forthe English tree are ‘‘projected’’ onto the Hindi sentence

Fig. 3 Simple but frequent example of a 1-to-many German–English alignment found in the Sophie’s
World portion of the SMULTRON corpus (Volk et al. 2010)

Capturing divergence in dependency trees 713

123



3 Methodology

In our approach to automatically detecting divergent structures between language pairs,

we first propose a metric to measure the degree of matched edges between trees in a

language pair (Sect. 3.2). Second, we define three operations on trees in order to capture

three common types of divergence (Sect. 3.3). Third, we apply the operations on a tree

pair and show how the operations could affect the degree of tree match (Sect. 3.4).

Next, we address how the detected patterns can be used to apply tree modification

rules to improve the projection algorithm (Sect. 3.5) and help in training a

dependency parser (Sect. 3.6). Finally, we will explain the relationship of our

operations to Dorr’s divergence types (Sect. 3.7).

3.1 Definitions

In the following sections, as we describe the projection algorithm and trees, we will

assume that the resource-rich language being projected from is typically English, E

(1), found in the translation line of IGT instances, and the resource-poor language is

the foreign language F (2). Each sentence will be represented by a pair of words and

tree edges ðW ; TÞ. TE (3) will refer to the English tree, and TF (4) the foreign-

language tree, with WE (5) and WF (6) referring to the individual words in the

respective sentences. Each tree edge will be represented as a pair of words to be

connected, ðwchild;wparentÞ.

E ¼ ðWE; TEÞ ð1Þ

F ¼ ðWF ; TFÞ ð2Þ

TE ¼
�
ðei; ekÞ. . .ðen; emÞ

�
ð3Þ

TF ¼
�
ðfi; fkÞ. . .ðfn; fmÞ

�
ð4Þ

WE ¼ fei. . .emg ð5Þ

WF ¼ ffj. . .fng ð6Þ

3.2 Comparing dependency trees

Defining a metric for comparing dependency trees cross-linguistically proved to be

a crucial component of our method, as most existing tree similarity measures are

714 R. Georgi et al.

123



intended to compare tree representations with the same number of tokens.

Comparing across languages, however, means that the number of tokens can vary.

We instead look for a method to determine similarity by means of matched edges in

the tree, as shown in Fig. 5.

Given an IGT instance, and the sentences F and E as defined above, A is the word

alignment between the sentence pair, where fi and fj are words in WF and ek and el

are words in WE. E is defined similarly, except words in the translation line are

denoted as ei, not fi. The alignment A is a set of word pairs:

A ¼
�
ðfi; ekÞ. . .ðfj; elÞ

�
ð7Þ

We call an ðF;E;AÞ tuple an aligned tree pair. A corpus, C, in our experiments, is a

set of ðF;E;AÞ tuples. An edge ðfi; fkÞ in F is said to match an edge ðei; ekÞ in E if fi

is aligned to ei and fk is aligned to ek. Because the alignment between a sentence

pair can be many-to-many, we define the following functions, which map a word

from one sentence to the set of words in the other sentence.

RF!Eðfi;AÞ ¼
n

e
�� ðfi; eÞ 2 A

o
ð8Þ

RE!Fðei;AÞ ¼
n

f
�� ðf ; eiÞ 2 A

o
ð9Þ

We then define the boolean function match, as follows:

ðfi; fj; TE;AÞ ¼
1 if 9ea; ebððea 2 RF!EðfiÞÞ^
ðeb 2 RF!EðfjÞÞ ^ ððea; ebÞ 2 TEÞÞ

0 otherwise

8
<

:
ð10Þ

That is, an edge ðfi; fjÞ in F matches some edge in E according to A if there exists

two words, ea and eb in E such that ea aligns to fi, eb aligns to fj, and ðea; ebÞ is an

edge in E.

Given an aligned tree pair ðF;E;AÞ, we define SentMatchðF;E;AÞ as the

percentage of edges in F that match some edge in E. Given a corpus C, we define

Fig. 4 Flowchart demonstrating the basic projection system using IGT

Capturing divergence in dependency trees 715

123



CorpusMatchF!EðCÞ as the percentage of edges in the TF trees that match some

edges in the corresponding TE trees. Similarly, CorpusMatchE!FðCÞ is the

percentage of edges in the TE trees that match some edges in the corresponding

TF trees.

Algorithm 1: Calculating the percentage of matched edges in corpus C.

CorpusMatchF!EðCÞ ¼
P
ðF;E;AÞ 2 C

P
ðfi; fjÞ 2 TF

matchðfi; fj; TE;AÞ
� �

P
ðF;E;AÞ2C

��TF

��
ð11Þ

3.3 Defining Tree Operations

When an edge ðfi; fkÞ in TF does not match any edge in TE, it may be caused by one

of the following cases:

C1 fi or fk are spontaneous (they do not align with any words in the other tree).

C2 fi and fk are both aligned with the same node ei in the other tree (Fig. 5b).

716 R. Georgi et al.

123



C3 fi and fk are both aligned with nodes in the other tree, ek and ei, but in a

reversed parent-child relationship (Fig. 5c).

C4 There are some other structural differences not caused by C3.3–C3.3.

The first three cases are common. To capture them, we define three operations on a

tree—remove, merge, and swap.

3.3.1 O1: Remove

The remove operation is used to remove spontaneous words. As shown in Fig. 6a,

removal of the node l is accomplished by removing the link between node l and its

parent j, and adding links between the parent and the removed node’s children.

This result of this operation can be seen in Fig. 6a, using the relation Children,

which maps a word to the set of all its children in the tree.

3.3.2 O2: Merge

The merge operation is used when a node and some or all of its children in one tree

align to the same node(s) in the other tree, as can be seen in Fig. 5b. The parent

j and child l are collapsed into a merged node, as indicated by l?j in Fig. 6b, and the

children of l are promoted to become children of the new node l?j. The result can

be seen in Fig. 6b.

(a) (b) (c)

Fig. 5 Definition of a match, merge, and swap edges in a tree pair. (a) A match alignment. (b) A merge
alignment. (c) A swap alignment

Capturing divergence in dependency trees 717

123



3.3.3 O3: Swap

The swap operation is used when two nodes in one tree are aligned to two nodes in

the other tree, but in a reciprocal relationship, as shown in Fig. 5c. This operation

can be used to handle certain divergence types such as demotional and promotional
divergence, which will be discussed in more detail in Sect. 3.7.

Figure 6c illustrates how the swap operation takes place by swapping nodes

l and j. Node j, the former parent, is demoted, keeping its attachment to its

children. Node l, the former child, is promoted, and its children become

siblings of node j, the result of which can be seen in Fig. 6c. Note that the

swap operation does affect multiple edges simultaneously, and thus can create

a mismatch on one edge while fixing that of another. We allow for this

possibility since trees that exhibit such behavior are rare, and will not be easily

reconciled.

3.4 Calculating tree matches after applying operations

The operations O1–O3 are proposed to handle common divergence cases in C1–C3.

To measure how common C1–C3 is in a language pair, we designed an algorithm

that transforms a tree pair based on a word alignment.

718 R. Georgi et al.

123



The algorithm takes a tree pair ðF;EÞ and a word alignment A as input and

creates a modified tree pair (F0, E0) and an updated word alignment A0 as output. It

has several steps. First, spontaneous nodes (nodes that do not align to any node on

the other tree) are removed from each tree. Next, if a node and its parent align to the

same node on the other tree, they are merged and the word alignment is changed

accordingly. Finally, the swap operation is applied to a node fi and its parent fp in

one tree if they align to ei and ep respectively and ep is a child of ei in the other tree.

The pseudocode of the algorithm is shown in Algorithm 5.

Now given a corpus C and word alignment between each sentence pair, we can

measure the impact of C1–C3 by comparing CorpusMatchE!FðCÞ scores before and

after applying operations O1–O3. This process can also reveal some patterns of

divergence (e.g., what types of nodes are often merged), and the patterns can later

be used to enhance existing projection algorithms.

Capturing divergence in dependency trees 719

123



3.5 Improving projection algorithms

With the tree operations described above, we can detect potential post-processing

rules automatically. In Georgi et al. (2013), we showed that by coupling the

divergent remove, merge, and swap cases C1–C3 with corresponding operations

O1–O3, we are able to keep statistics on the affected nodes, and then use these

statistics to make the following corrections to the projection algorithm:

1. Spontaneous: better informed attachment of spontaneous words.

2. Merge: better informed choice for head for multiply-aligned words.

3. Swap: post-projection correction of frequently swapped word pairs.

Figure 7 shows flowcharts for the learning and applying of the correction patterns

described in the following sections. Compared to the basic projection algorithm

(System 1) illustrated in Fig. 4, the improved projection algorithm has two stages: in

the training stage, correction rules are learned by comparing the projected trees

(a)

(b)

(c)

Fig. 6 Trees showing the results of the operations defined in O1–O3. ChildrenðwÞ returns the set of
words that depend on w. Here we show the value of ChildrenðnodeÞ after the operations only if its value is
changed by the operations. (a) Before and after the node l has been removed (O1). (b) Before and after the
nodes l and j have been merged (O2). (c) Before and after the nodes l and j have been swapped (O3)

720 R. Georgi et al.

123



produced by System 1 with the gold standard trees for the F sentences. In the test

stage, those rules are applied to the projected trees produced by System 1.

3.5.1 Spontaneous reattachment

The analog to the Remove operation in modifying the projection algorithm is

determining how to reattach spontaneous (unaligned) words. Given that they are

unaligned, no information from E is projected to them, so a lexicalized approach is

used. First, we note all lexical items in the training trees and the relative position of

their head (left/right). Second, we select the attachment direction for every word in

the training data as noted and the attachment direction for the language as a whole.

At test time, if the spontaneous word appears in the training data, we use either the

word’s preference based on the training data to make a left or right local attachment,

otherwise we use the language’s overall attachment direction as a backoff.

(a)

(b)

Fig. 7 Flowcharts for the learning and applying of correction rules for a basic projection algorithm.
‘‘System 1’’ refers to the basic projection algorithm illustrated in Fig. 4. (a) Flowchart for the training
phase of corrected projection, in which the projections are produced, and then the correction rules are
learned from a set of gold trees. (b) Flowchart for the testing phase of the corrected projection, in which
the projection rules learned in a are applied to the projected trees from System 1

Capturing divergence in dependency trees 721

123



3.5.2 Merge correction

As shown in Fig. 5b, ‘‘merged’’ alignments are those for which there are multiple

words in WF aligned to a single word in WE. The difficulty facing projection

algorithms in this instance is that it is not clear which of these multiply-aligned

words should be made the head, and which the dependent.

In order to correct the projection at runtime, we would like to be able to know

which of the multiply aligned words should be selected as the head. By keeping

statistics on whether the multiply aligned words for a given POS tag tend toward the

left or the right, we can then use the POS tag that is present at runtime to select the

headedness for attachment.

Figure 8a illustrates a detected merge case, while Figure 8b demonstrates the

‘‘left’’ direction of the multiply aligned dependency between the two words. Finally,

Figure 8c shows an example set of rules for a given English POS tag learned by this

method. At projection time, the direction of the merge is chosen by the most likely

rule learned by the analysis, or by the language’s overall headedness preference as a

backoff.

These preferences can easily be learned by examining the attachments for each

word in the corpus, and finding the proportion of those tokens that attach to words to

the left versus those to the right, then using the majority preference at testing time.

3.5.3 Swap correction

Swapped alignments, as illustrated in Fig. 9a, are not patterns which would be able

to be corrected in projection without some previous training, since it would require

the foreign-language tree TF to already exist. Unfortunately, as we will discuss later

with Hindi, these swaps can be frequent enough to cause serious performance

problems in projection.

In order to correct for the swapped elements, we analyze the edges for which the

swap operation was triggered, similar to the merge operation above. However,

rather than keeping track of only a single part of speech tag, we instead keep

statistics on the (POSchild, POSparentÞ edge in TE, and the number of times that

corresponds to a swap operation in TF . Based on the collected counts, we keep only

(a) (b) (c)

Fig. 8 Example of merged alignment and rules derived from the merged alignment. (a) Alignment
between an English word ei and two foreign-language words {fm, fn}, where fm is the parent of the other
word fn. (b) Words in sentence F showing the ‘‘left’’ dependency between fm and fn. (c) Rules for handling
merged alignment

722 R. Georgi et al.

123



the pairs that occur in at least of 10 % of the training sentences, and a frequency of

at least 70 %1.

To apply the rules, after projection, the POS tag pairs that meet the given

requirements are swapped using the Swap operation defined by O3 in Sect. 3.3. The

results of applying these post-processing rules will be discussed in Sect. 4.5.

3.6 Bootstrapping a parser

Given that the analysis described here uses a small amount of training data to build

these rules, one can also train a parser using the same data. Figure 10 illustrates a

(a) (b)

Fig. 9 Example swap configuration and collected statistics. (a) A swapped alignment between words ej

and ei and words fm and fn. (b) Example set of learned swap rules. Swaps counts the number of times the
given (child, parent) pair is seen in a swap configuration in the English side, and total is the number of
times said pair occurs overall. The % column lists the frequency % of the swap

(a)

(b)

Fig. 10 Flowcharts for simple parser trained on projected trees alone. (a) Flowchart for the training
phase of the basic parser. The training trees used to train the parser can be produced by System 1 (see Fig.
4), System 2 (See Fig. 7), or gold standard trees. (b) Flowchart for the testing phase of the basic parser,
which requires only an F sentence and Parse model trained in a

1 These thresholds are set empirically to filter for rules that occur in multiple sentences with high

regularity.

Capturing divergence in dependency trees 723

123



dependency parser trained on the small amount of monolingual data available for

the given language, produced either by projection or by gold standard data.

However, with such little data such a system is often outperformed by even the basic

projection method, as noted in Georgi et al. (2012), cf. S3-1 in Table 5 versus S1-R/

L in Table 4. In this previous paper, we used the edges of the projected trees as a

feature to extend the MST Dependency Parser (McDonald et al. 2006) and the

experiments showed an increase in performance over both the baseline parser and

the basic projection algorithm in many cases. Here, we take the baseline parser and

add a number of features based on projected trees provided at testing time (Fig. 11).

As previously defined, let E ¼ ðWE; TEÞ and F ¼ ðWF ; TFÞ, the latter being the

tree built by the projection algorithm. RF!Eðfi;AÞ and RE!Fðfi;AÞ are defined the

same way as Eqs. (8) and (9) in Sect. 3.2. Now we can define the projection-based

features in Eqs. (12) and (13).

(12)

(13)

The ProjBool feature, as defined in (12) is the basic feature used for marking

agreement between an edge in the projected tree and an edge being considered by

the parser. This feature simply takes a TRUE value if the edge being considered by

the parser also occurs in the projection. The AlignType (13), on the other hand, is

actually a group of binary features used to subdivide agreement with the projection

based upon the type of alignment exhibited by the word ei to words in TF . AlignType

has four sub-features based on possible alignment types, which are illustrated in

Fig. 12. IS_SINGLE (Fig. 12a) is TRUE when a token fi aligns to only one word in

TE. IS_UNALIGNED (Fig. 12b) is triggered when fi is a spontaneous word; that is,

it does not align to any word in TE.

IS_MATCH is TRUE in the case where the edge ðfi; fjÞ is being considered by the

parser for the edge and the parent and child align with words ei, ej in TE, and have

the same parent/child relationship, as seen in Fig. 12c. IS_MERGE is TRUE when

the foreign language word fi is one of multiple foreign words aligned with a single

English word ei (Fig. 12d).

Adding these features to the original feature set used by the MST Parser results

the System 4, illustrated in Fig. 11. In the training stage, Match/Aln features are

724 R. Georgi et al.

123



extracted from the E trees and projected trees. Those features are added to the

standard feature set used by the MST parser, and the expanded feature set is used to

train the MST parser.

In the test stage, the Match/Aln features are extracted from projected F trees, and

they are added to the standard features. Because of the addition of the Match/Aln

features, unlike System 3, System 4 requires the test F sentences to have an aligned

English sentence.

Note that for the projected F trees used to extract Match/Aln features can come

from System 1, System 2, or the gold standard. The same is true for the standard

(a)

(b)

Fig. 11 Flowcharts for the improved parser parser described in Sect. 3.6. (a) Flowchart showing the
training, using both match and alignment features. Note that the ‘‘gold’’ trees used to extract the standard
features and dependency edges for training the parser are separate from the additional trees provided to
the parser to extract match and alignment features. These additional trees are typically the projected trees,
which will be available to the parser at testing time, but gold trees can be used for an oracle experiment.
(b) Flowchart showing the testing phase, using the parse model produced in a as well as additional trees
provided to the parser, using the system chosen for this task in a. Using the match and alignment features
with these trees, and the standard features from the training phase, the parser produces an improved set of
parsed F trees

Capturing divergence in dependency trees 725

123



features. In Sect. 4.6 we will compare the parsing performance when different

combinations of F trees are used (see Table 5a, b).

3.7 Relationship to Dorr (1994)

Dorr (1994) lists seven types of divergence for language pairs. While our analysis

method is more coarse-grained than the LCS that Dorr proposes, it is nonetheless

able to capture some of the same cases.

For instance, Fig. 13a illustrates an example of what Dorr identified as

‘‘promotional’’ divergence, where usually, a dependent of the verb goes in English,

is ‘‘promoted’’ to become the main verb, suele in Spanish. In this case, the direction

of the dependency between usually and goes is reversed in Spanish, and thus the

swap operation can be applied to the English tree and result in a tree that looks very

much like the Spanish tree.

A similar operation is performed for demotional divergence cases, such as

aligning ‘‘I like eating’’ with the German translation ‘‘Ich esse gern’’ (‘‘I eat

likingly’’). Here, the main verb in English (‘‘like’’) is demoted to an adverbial

modifier in German (‘‘gern’’). The swap operation is applicable to both types of

divergence and treats them equivalently, and so it essentially can handle a superset

of promotional and demotional divergence, namely,‘‘head-swapping.’’

Another type of divergence that can be captured by our approach is Dorr ’s

‘‘structural’’ divergence type, as illustrated in Fig. 13b. The difference between the

English and Spanish structures in this case is the form of the argument that the verb

takes. In English, it is a NP; in Spanish, it is a prepositional phrase. While the tree

operations defined previously do not explicitly recognize this difference in syntactic

labels, the divergence can be handled by the remove operation, where the

spontaneous ‘‘en’’ in the Spanish side is removed.

(a) (b)

(c) (d)

Fig. 12 Different alignment configurations that trigger the AlignType feature. (a) The IS_SINGLE
alignment feature is red for token fi in this conguration. (b) The IS_UNALIGNED alignment feature is
red for token fi in this conguration. (c) The IS_MATCH alignment feature is red for tokens (fi; fj) in this
conguration. (d) The IS_MERGE alignment feature is red for tokens (fi; fj) in this conguration

726 R. Georgi et al.

123



Next, Dorr’s description of conflational divergence lines up well with the merge
operation (see Fig. 6b). Figure 14 illustrates an example for English and Hindi,

where both sides have spontaneous words (e.g., to and a in English) and a causative

verb in Hindi corresponds to multiple verbs in English. Figure 14b shows the

original tree pair, Fig. 14c demonstrates the altered tree pair after removing

spontaneous words from both sides, while Fig. 14d shows the tree pairs after the

English verbs are merged into a single node. It is clear that the remove and merge
operations make the Hindi and English trees much more similar to each other.

In addition to the four divergence types mentioned above, additional operations

could be added to handle other divergence types. For instance, if dependency types

(e.g., patient, agent) are given in the dependency structure, we can define a new

operation that changes the dependency type of an edge to account for thematic
divergence, where thematic roles are switched as in ‘‘I like Mary’’ in English vs.

‘‘María me gusta a mí’’ (Mary pleases me) in Spanish. Similarly, an operation that

changes the POS tag of a word can be added to cover categorial divergence where

words representing the same semantic content have different word categories in the

two languages, such as in ‘‘I am hungry’’ in English versus ‘‘Ich habe Hunger’’ (I

have hunger) in German.

Compared to Dorr’s divergence types, whose identification requires knowledge

about the language pairs, our operations on the dependency structure relies on word

alignment and tree pairs and can be applied automatically.

(a)

(b)

Fig. 13 Two examples of divergence types described in Dorr (1994). (a) An example of promotional
divergence from Dorr (1994). The reverse in parent-child relation is handled by the Swap operation.
(b) Example of structural divergence, which is handled by the remove operation

Capturing divergence in dependency trees 727

123



4 Experiments

For evaluation, we ran our systems on a total of eleven language pairs, using the

corpora described in Table 1. We will describe the data used for our experiments in

Sect. 4.1. Section 4.2 details how the numbers of matches across corpus pairs are

counted, using the CorpusMatch metric described in Algorithm 1 in Sect. 3.2.

Section 4.3 will look at the cases in which the match percentage still doesn’t reach

100 % after applying all the tree operations. Section 4.4 will show some of the

patterns discovered by breaking down the analysis by POS. Finally, Sect. 4.5 will

discuss the results of using the automatically discovered patterns to improve the

baseline projection algorithm, while Sect. 4.6 shows the result of using this

improved projection algorithm to bootstrap a dependency parser.

4.1 Data

Our work utilizes three corpora for a total of eleven language pairs. The three

corpora used are the SMULTRON treebank (Volk et al. 2010), the guideline

(a)

(b)

(c)

(d)

Fig. 14 Case of conflational divergence, handled by remove and merge operations. (a) Interlinear text of
a sentence pair. *(b) Initial trees showing spontaneous words on both sides. (c) Altered trees after
removing spontaneous words from both sides, and showing conflational divergence between multiple
English words and a single Hindi word. (d) Altered trees after merging multiple words on the English side

728 R. Georgi et al.

123



sentences in IGT form from the Hindi treebank (Bhatt et al. 2009), and several sets

of IGT data as used in Lewis and Xia (2010). The statistics of the corpora are shown

in Table 1. Ten of the language pairs use English as one side of the language, while

the eleventh uses the pair of German and Swedish from the SMULTRON corpus.

In the SMULTRON Treebank, the German and Swedish phrase trees are marked

for head children, allowing for the automatic extraction of dependency trees. The

English side of the phrase structures do not contain edge labels and we converted the

phrase structures into dependency trees using a head percolation table (Collins

1999).

From the Hindi Treebank guidelines, we extracted example sentences in the form

of IGT (i.e., Hindi sentences, English gloss, and English translation) and the Hindi

dependency structures manually created by the guideline designers. We obtained

dependency structures for the English translation by running the Stanford

dependency parser (Marneffe et al. 2006) and then we hand corrected the structures.

Word alignment is initially derived from the IGT instances using heuristic

alignment following Lewis and Xia (2010), and later hand-corrected. The IGT data

from Lewis and Xia (2010) was obtained in the manually corrected dependency

forms as described in Sect. 2.2.

4.2 Match results

By running Algorithm 1, we can calculate the CorpusMatchE!F and CorpusMatchF!E

before and after each operation and see how the operation affects the percentage of

matched edges in the corpus. As the operations are applied, the percentage of matches

between the trees should increase until all the divergence cases that can be handled by

operations O1–O3 have been resolved. At this point, the final match percentage can be

Table 1 Data set sizes for all languages

Corpus Language # Instances # Words (F/E)

Hindi Treebank Hindi 147 963/945

ODIN

German 105 747/774

Irish 46 252/278

Hausa 77 424/520

Korean 103 518/731

Malagasy 87 489/646

Welsh 53 312/329

Yaqui 68 350/544

SMULTRON

German 281 6,829/7,236

Swedish 281 8,402/9,377

Ger-Swey 281 6,829/8,402

All language pairs have English for the second element of the pair, except for the Ger-Swe row marked

with y, where the language pair is German/Swedish . The last column shows the number of words in the

first language of the language pair (F), followed by the number of words in the second language of the

pair (E)

Capturing divergence in dependency trees 729

123



seen as an estimate of the upper-bound on performance of a simple projection algorithm,

if C1-C3 can be identified and handled by O1-O3. Table 2a shows the full results of this

process for the Hindi-English pair, while Table 2b shows a summary for the results in the

remaining ten languages.

The results in Table 2a show that the trees start out very dissimilar between

English and Hindi, having only 47.7 % of the edges in the English trees matching

those in the Hindi trees initially. After removing words that are not aligned between

English and Hindi, still only 66.1 % are aligned. While merging multiply-aligned

words improves this match by 3.4 %, applying swaps in the English trees results by

increasing matches by a large 20.8 %. The reason for this large increase in this

language pair can be attributed to the way in which prepositions and postpositions

are represented in Hindi, which is explained further in Sect. 4.4.

Between Hindi in Table 2a and the other languages in Table 2b, the application

of the operations increases the match percentage, but never reaches 100 %. The

match percentage after all operations are applied can be seen as an upper bound on

the tree similarities between the language pair for a given corpus.

Table 2 Match results in detail for hindi, and in overview for the other 7 languages

English idniHidniH English

Match UnAln Merge Swap Edges Match UnAln Merge Swap Edges

(a)

Initial baseline 47.7 20.9 1.6 9.1 794 46.3 20.7 1.7 8.8 816

After remove 66.1 0.0 2.1 11.7 622 63.4 0.0 2.2 11.3 647

After merge 69.5 0.0 0.0 12.3 586 69.2 0.0 0.0 12.3 587

After swap 90.3 0.0 0.0 0.3 586 89.9 0.0 0.0 0.3 587

ATADNORTLUMSATADNIDO

YAQ WLS KKN GLI HUA GER MEX GER SWE GER-SWE

(b)

Initial baseline 75.4 75.4 56.0 72.0 54.4 76.7 57.4 40.7 37.5 43.3

After remove 95.1 95.1 88.1 87.8 95.7 93.9 88.9 63.6 62.2 73.5

After merge 97.2 97.2 95.4 92.5 97.5 95.4 97.4 71.8 73.9 82.8

After swap 98.2 98.2 96.1 94.1 97.5 96.8 98.0 83.0 84.2 87.2

(a) Breakdown of edges as operations are applied to the English $ Hindi language pair, given in both

directions since the comparison is asymmetrical. The baseline is given, then operations are applied to

create new trees. The ‘‘Edges’’ column represents the number of total edges in the trees of the left hand of

the language pair. The numbers given in the other columns are the percentages of those edges that are

either in a match, swap, or merge alignment, or the edges for which the child is unaligned (indicated in

the table by ‘UnAln’)

(b) Summary of the match percentages for the remaining ten language pairs, Yaqui (YAQ), Welsh

(WLS), Korean (KKN), Scots Gaelic (GLI), Hausa (HUA), German (GER), Swedish (SWE) and GER-

SWE. Except for GER-SWE, English is the first language of the pair

730 R. Georgi et al.

123



4.3 Remaining cases

After applying three operations, there may still be unmatched edges. An example is

given in Fig. 15.2 The dependency edge (in, America) can be reversed by the swap
operation to match the Hindi counterpart. The mismatch in this sentence is that the

adverb mentally in English corresponds to the noun mana (mind) in Hindi. If the

word alignment includes the three word pairs as indicated by the dotted lines, one

potential way to handle this kind of divergence is to extend the definition of merge
to allow edges to be merged on both sides simultaneously—in this case, merging am
and mentally in the English side, and hE (is) and mana (mind) on the Hindi side.

4.4 Operation breakdown by POS

After performing the operations as seen in Sect. 4.2, we can get further insight into what

precisely is happening within each language by breaking down the operations by the POS

tags on which the operations apply. Table 3 shows some of these POS tag breakdowns

for a number of languages, and the frequency with which the given operation applies to

the POS tag or POS tag pair out of all the times it is seen in that language. For example, the

results in Row 1 shows that when a modal (MD) depends on a verb (VB) in English,

43.9 % of the time in the training data, the two words align to the same word in Hindi.

Table 3 shows expected phenomena from the language pairs. For instance, Rows 5 and 6

show the English!German pair merging many nouns as multiple English words are

expressed as compounds in German. In another case, Row 8 shows that all Hindi nouns

undergo swap with prepositions, as Hindi uses postpositions. Noticing the regularity with

which NN and IN swap leads us to the next experiment, where we examine how such

regularly-occurring rules might be harnessed to improve projection.

4.5 Analyzing trees for post-processing rules

Table 4 compares the projection accuracy of the basic projection algorithm (System

1 as in Fig. 4) and the improved projection algorithm (System 2 as in Fig. 7). For

all the experiments, we use tenfold cross validation with a 9:1 training/test split.

Fig. 15 A tree pair that still has unmatched edges after applying the algorithm in Table 5. The dotted line
indicates word alignment that would be needed to resolve the divergence with the extended merge operation

2 It is a topic of debate whether mentally in English should depend on in or am. If it depends on in,

handling the divergence would be more difficult.

Capturing divergence in dependency trees 731

123



In this table, System 1 (S1) serves as a baseline. In System 1, when a merge

alignment was detected or a spontaneous word needed reattaching, the algorithm

simply attached rightward (S1-R) or leftward (S1-L). The results are in the last two

rows of Table 4b. The numbers in the table are Unlabeled Attachment Scores

(UAS). In contrast, System 2 (S2) uses the training data to learn which direction the

attachment is more common. In addition to the merge rules, System 2 can also apply

rules for swap, or remove. These results are shown in the first three rows of

Table 4b. The table shows that applying automatically learned rules improves

projection accuracy significantly, the average accuracy increasing from 83.22 %

(S1-L) or 83.58 % (S1-R) to 88.95 % (S2-1).

4.6 Parsing experiments

In Sect. 3.6, we described two parsing approaches: System 3 and System 4. In System

3 (see Fig. 10 in Sect. 3.6), the MST parser uses the standard feature set without using

Match/Aln features. It is trained with the projected trees produced by System 1, System

2, or gold standard F trees (As shown in the ‘‘Train Source’’ Column in Table 5a. For

Table 3 Breakdown of significant merge and swap statistics for various language pairs, where the

language to the left of the arrow is the one being altered

Lang pair Row # Child POS Parent POS % All cases

Merges

Eng!Hin 1 MD VB 42.9

2 NN NN 14.3

Hin!Eng 3 VAUX VM 45.4

4 NN VM 5.5

Eng!Ger 5 NN NNS 66.7

6 NN NN 65.4

7 NNS NN 4.2

Swaps

Hin!Eng 8 IN NN 100

9 NNP IN 20.0

Ger!Eng 10 APPRART NN 72.7

11 NN CC 61.5

Removals

Eng!Hin 12 DT 86.4

13 TO 75.6

Hin!Eng 14 PSP 69.8

15 VAUX 18.6

Eng!Ger 16 POS 57.1

17 DT 20.2

Ger!Eng 18 PRF 85.2

19 ADV 43.9

732 R. Georgi et al.

123



the feature set, we can use either the word features only or add POS tag features in the F

sentences (as indicated by the checkmark in the ‘‘Projected POS Feat’’ column). If only

the word features are used, the input are F sents with words only. If POS tag features

are used, for both training and test data, we use the POS tags projected from the English

side. The parsing results are shown rows labeled S3-1 to S3-5 in Table 5.

In System 4 (see Fig. 11 in Sect. 3.6), Match/Aln features are added to the

standard feature set used by the MST parser. Standard features can be extracted

from System 1, System 2, or gold F trees. The same is true for the Match/Aln

features. The sources of the trees are indicated in the ‘‘Train Sources’’ column in

Table 5a. At the test stage, standard features are extracted from test F sentences

with projected POS tags, and the source of the Match/Aln features is indicated in the

‘‘Test Source’’ column. The ‘‘Oracle’’ system is the system in which Gold F trees

are used both for training and testing. S4-1 through S4-3 are a few variants of

System 4 when different combinations of train and test sources are used.

There are several observations: First, adding the Match/Aln features improves

performance significantly, from 89.32 % in S4-1 versus 79.16 % in S3-1. Second,

using the improved projection algorithm improves parsing results compared to using

the basic projection algorithm for both System 3 (row S3-2 vs. S3-3 and S3-4) and

Table 4 Settings and unaligned attachment scores for the baseline and improved projection algorithms

(a) Projection Algorithm Settings

System Name Merge Swap Remove

S2-1 X

S2-2 X

S2-3 X

S1-R R

S1-L L

(b) Projection Algorithm Results

System Name YAQ WLS HIN KKN GLI HUA GER MEX AVG

S2-1 88.03 94.90 77.38 91.75 87.70 90.11 88.71 93.05 88.95

S2-2 88.03 94.90 69.02 91.55 87.70 90.11 88.71 93.05 87.86

S2-3 87.28 89.80 68.60 90.34 86.90 79.54 88.03 89.57 84.68

S1-R 87.28 89.80 57.41 90.34 86.90 79.31 88.03 89.57 83.58

S1-L 84.29 89.80 68.60 88.93 76.98 79.54 88.03 89.57 83.22

(a) Settings for the different projection algorithms. The S1 systems are the baseline projection algorithm

as illustrated in Figure 4 in Sect. 2.2, preferring either right-branching (R) or left-branching (L) for

attachment and merging defaults. The S2 systems refer to the one illustrated in Figure 7 in Sect. 3.5.

iteratively add the swap, remove, and merge correction. The merge correction in the S2 systems prefers

the attachment directions determined by the discovery process in Sect. 3.5

(b) The results of the baseline (S1) and improved (S2) projection algorithms among eight language pairs:

Yaqui (YAQ), Welsh (WLS), Hindi (HIN), Korean (KKN), Scots Gaelic (GLI), Hausa (HUA), German

(GER), and Malagasy (MEX). Among the S1 systems, the best performing baseline is shown in italics

Capturing divergence in dependency trees 733

123



System 4 (row S4-1 vs. S4-2 and S4-3). A further discussion and comparison of the

average scores of the system can be found in Sect. 5.3.

5 Discussion of results

The results of the experiments above show that the match scoring that we have

introduced here has the potential to address many interesting issues arising between

language pairs. In this section, we highlight some observations based on the

experimental results.

Table 5 Settings and results for MST parser systems 3 & 4

(a) MST parser settings

System Match/Aln Projected Train Test
Name Feats POS feats Sources Source

Oracle Gold, Gold Gold

S4-1 Gold, S2-1 S2-1

S4-2 Gold, S1-R S1-R

S4-3 Gold, S1-L S1-L

S3-1 Gold —

S3-2 S2-1 —

S3-3 S1-R —

S3-4 S1-L —

—dloG5-3S

(b) MST parser results

System name YAQ WLS HIN KKN GLI HUA GER MEX AVG

Oracle 96.51 98.26 98.03 99.17 95.63 99.31 98.07 97.93 97.86

S4-1 89.28 94.90 81.35 92.96 81.35 88.74 92.93 93.05 89.32

S4-2 88.28 94.22 78.03 92.35 80.95 87.59 90.48 92.43 88.04

S4-3 87.88 94.22 79.64 90.95 80.95 89.20 90.48 92.43 88.22

S3-1 84.54 71.43 76.76 82.49 66.67 86.44 81.09 83.84 79.16

S3-2 81.30 74.49 59.73 83.30 59.92 85.29 78.78 82.82 75.70

S3-3 83.04 69.05 38.59 82.49 61.51 68.05 77.14 79.35 69.90

S3-4 79.05 69.05 49.42 81.09 56.75 73.33 77.69 79.75 70.77

S3-5 66.58 32.99 48.90 77.06 51.98 48.51 56.05 58.69 55.10

(a) Matrix of settings for the MST parser experiments. The Oracle system is a version of the S4 system

that gold trees for both the training, additional features, and at test time. The S4-1 through 3 systems use a

portion of the gold trees at training time, in conjunction with projected trees from the S2 system, or a

version of the S1 system where attachment is left-default (S1-L) or right-default (S1-R). Finally, the S3-1

through 5 systems train the parser using only a set of monolingual trees, from the sources noted by ‘‘Train

Sources.’’

(b) Results for the systems described in (a) across the 8 language pairs

734 R. Georgi et al.

123



5.1 Match scores

The results of Table 2a and b compare similarity both across languages and across

corpora. For instance, in the scores for the baseline ODIN data, we see that the

baseline for matches between English and German is the highest out of all the pairs

at 76.7 %. Scots Gaelic and Welsh are 72 and 75.4 %, respectively. Hausa,

Malagasy, Korean, and Yaqui all show baseline scores between 54–57 %. This

seems in line with what we would expect, with German and the Celtic languages

being closely related to English, and the others being unrelated.

Another stark contrast can be seen between all the languages in the ODIN data and

the languages in the SMULTRON corpus. While the ODIN sentences tend to be short

sentences used primarily for illustrative purposes, the SMULTRON corpus consists

of economic, literary, and weather domains. As Table 1 shows, the SMULTRON

sentences are much longer on average. A closer look at the SMULTRON translations

also shows them to be much freer translations than those found in the ODIN data.

While the size of the data sets used here are very small, and the ODIN IGT data may

be biased towards illustrative purposes (described as the ‘‘IGT Bias’’ in Lewis and

Xia (2010)), it would appear that these results illustrate that the match detection

highlights two types of differences among the corpora. First, by comparing baselines

match results among comparable corpora, basic similarities between languages

appear to pattern as expected. Second, the freer translations in the SMULTRON data

appear with lower match scores across all instances.

One final item of interest from the match results can be seen in the Hindi data in

Table 2a. Here, there appears to be a large increase in match percentage after the

swap operation has been performed. As previously noted, knowing this is the

inspiration for automatically inferring the swap rules in Sect. 4.5.

5.2 POS breakdowns

The breakdown of the operations by language and POS in Table 3 provides a good

opportunity to check that the defined operations conform with expectations for

specific languages.

For instance, Row 1 in Table 3 shows Modals (MD) merging with a parent (VB).

This is in line with instances such as Fig. 14c where Hindi combines aspect with a

verb that is typically expressed as a separate word in English. This does not appear

to be a very frequent occurrence, however, as it only occurs for 42.9 % of MD!VB

dependencies.

Row 3, going from Hindi to English shows the case where auxiliary verbs VAUX

merge with main verbs VM. These cases typically represent those where Hindi

expresses tense as an auxiliary verb, whereas English tense is expressed by

inflection on the verb.

With regard to spontaneous words in English and Hindi, Row 14 shows that

69.8 % of case markers (PSP) were removed from Hindi that were either absent in

English or applied as inflections to the noun, while 86 % of determiners in English

were removed, as Hindi does not have definite or indefinite determiners (Row 12).

Capturing divergence in dependency trees 735

123



Examining the English and German data in Table 3, we first see in Row 5 that

66.7 % of NN-NNS dependencies in English merge. This, along with the 65.4 % of

NN-NN dependencies merging, is something we would expect to see in German, as

it compounds nouns with far more frequency than English. Interestingly, as Row 7

shows, a plural noun child never merges with a parent noun.

Finally, looking more closely at the swaps, we see a 100 % of NN!IN

dependencies are swapped in Hindi, giving further impetus for the rules as described

in Sect. 4.5.

5.3 Performance summary

In this study, we proposed four systems for parsing F sentences: basic projection

(System 1), improved projection (System 2), original MST parser trained with

projected F trees (System 3), and MST parser with additional Match/Aln features

(System 4). The results are in Tables 4 and 5. A summary of the most important

results of these tables and the comparison of the systems are in Table 6a, and the

error reduction of some system pairs are in Table 6b.

As Table 6b shows, in average across the eight languages, the reduction in error

in using the parser trained with match and alignment features (S4-1) has a 48.76 %

reduction in error over the parser trained on the gold standard trees with projected

POS tags (S3-1). In the projection systems alone, the improved projection system

S2-1 reduces error over the baseline system S1-R by 32.73 %. Finally, even without

the Match/Aln features, a monolingual parser trained on projected dependency trees

(S3-2) shows 19.27 % fewer errors than the system trained on the basic projections

(S3-3).

While the improvement over the modified projection algorithm is modest, a

dependency parser such as S4-1 does have the advantage of being more noise-

robust. For instance, given an English sentence where the head of the English

sentence is not aligned to any of the words in the language line, projection

algorithms will not produce a tree structure, whereas the MST Parser will produce a

tree structure based on other features when the alignment is not available. This

advantage makes such an approach appealing for extending to larger corpora, which

is something we will address in Sect. 6.

5.4 Remaining issues

Two large issues that our methodology faces are data sparsity and translation quality

of the sentence pairs in the data sets. The former is somewhat inevitable given the

task—a reasonable amount of annotated data is not always likely to exist for

languages with scarce electronic resources, and guaranteeing coverage is difficult.

As with the Hindi data, however, using IGT as a resource has convenience in both

covering wide varieties of phenomena in a language, and providing a gloss that

assists in creating word-level alignments. Creating dependency annotation on a

small set of data from a source like ODIN (Lewis and Xia 2010) can get a lot of

mileage with a small amount of investment.

736 R. Georgi et al.

123



T
a

b
le

6
S

u
m

m
ar

y
o

f
re

su
lt

s
fr

o
m

p
ro

je
ct

io
n

an
d

p
ar

se
r

sy
st

em
s

(a
)

Su
m

m
ar

y
of

A
ve

ra
ge

A
cc

ur
ac

ie
s

A
cr

os
s

L
an

gu
ag

es

Pa
rs

er
U

se
d

Pr
oj

.
U

se
d

M
at

ch
/A

ln
Fe

at
s

U
se

d
Pr

oj
.

C
or

re
ct

ed
IG

T
/B

ite
xt

R
eq

’d
at

T
es

t
T

im
e

A
vg

.
Pa

rs
e

A
cc

ur
ac

y
D

et
ai

l
In

S4
-1

89
.3

2
T

ab
le

5

S2
-1

88
.9

5
T

ab
le

4
S1

-R
83

.5
8

S3
-1

79
.1

6

T
ab

le
5

S3
-2

75
.7

0

S3
-3

69
.9

0

S3
-5

55
.1

0

(b
)

E
rr

or
re

du
ct

io
n

be
tw

ee
n

sy
st

em
s

noit cu der
ro rre

%
g v

A
noi tp ir cse

D
s

met sy S

67.84
r esr ap

susrev
serut aef

nl
A/hcta

m
f o

es
U

1-3S
sus rev

1-4S

37.23
noit cejorp

enile sa b
susrev

sn oi tce jorp
d evorp

m I
R- 1S

s usre v
1 -2S S3

-2
ve

rs
us

S3
-3

Pa
rs

er
tr

ai
ne

d
on

im
pr

ov
ed

pr
oj

ec
tio

ns
ve

rs
us

ba
se

lin
e

pr
oj

ec
tio

ns
19

.2
7

(a
)

S
u

m
m

ar
y

o
f

se
le

ct
re

su
lt

s
fr

o
m

T
ab

le
s

4
an

d
5

in
d

ec
re

as
in

g
o

rd
er

o
f

p
er

fo
rm

an
ce

.
F

o
r

fu
ll

ex
p

la
n

at
io

n
o

f
in

d
iv

id
u
al

sy
st

em
p

ar
am

et
er

s,
se

e
th

e
re

fe
re

n
ce

d
ta

b
le

(b
)

A
v
er

ag
e

p
er

ce
n
t

re
d
u
ct

io
n

in
er

ro
r

in
co

m
p
ar

is
o
n
s

b
et

w
ee

n
th

e
sy

st
em

s
fr

o
m

(a
)

Capturing divergence in dependency trees 737

123



Perhaps the more challenging issue is determining whether divergence in a

language pair is caused by fundamental differences between the languages, or

simply stylistic choices in translation. The latter of these scenarios appeared to be

common in portions of the SMULTRON data, where translations appeared to be

geared toward naturalness in the target language; in contrast, the translations in the

Hindi guideline sentences were intended to be as literal as possible. Again, IGT

provides a good possible solution, as such examples are often intended specifically

for illustrative purposes.

6 Conclusion and future work

In this paper, we have demonstrated a generalizable approach to detecting patterns

of structural divergence across language pairs using simple tree operations based on

word alignment. We have shown that this methodology can be used to detect

similarities between languages on a coarse level, as well as serve as a general

measure of similarity between dependency corpora. Finally, we establish that

harnessing these detection methods improves standard projection algorithms and

informs dependency parsing with little to no expert involvement.

For future work, we plan to focus on two areas. The first is that of adapting these

techniques to larger data sets. In particular, use of the high-quality alignments

derived from IGT to bootstrap a statistical aligner may allow for reasonable

performance on languages for which the amount of parallel data may not be

sufficient for building a high-quality statistical word aligner. Secondly, while this

paper explores the utility of IGT in terms of word alignment and projection, we are

currently looking into the ways in which the additional morphemic and lexicosyn-

tactic information in the gloss lines may be used to perform more complex

automated linguistic analysis.

The techniques described here are promising for maximizing the effectiveness of

existing resources such as IGT for languages where such resources are limited.

While access to electronic resources continues to increase globally, many of these

resource-poor languages are still left behind in terms of NLP tools. Though

projection techniques may not ultimately be full replacements for large treebank

projects, the ability of these techniques to be rapidly deployed is extremely useful

for researchers seeking to experiment with new languages at minimal cost.

References

Benajiba., Y. & Zitouni, I. (2010). Enhancing mention detection using projection via aligned corpora. In

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing at
Cambridge, MA (pp. 993–1001). Stroudsburg, PA, USA: Association for Computational Linguistics.

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D. M., & Xia, F. (2009). A multi-

representational and multi-layered treebank for hindi/urdu. In The Third Linguistic Annotation
Workshop (The LAW III) in conjunction with ACL/IJCNLP 2009. Association for Computational

Linguistics.

738 R. Georgi et al.

123



Brown, P. F., Cock, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., et al. (1990). A

statistical approach to machine translation. Computational Linguistics, 16(2), 79–85.

Calzolari, N., Del Gratta, R., Francopoulo, G., Mariani, J., Rubino, F., Russo, I. & Soria, C. (2012). The

LRE Map. Harmonising Community Descriptions of Resources. In LREC (International Conference
on Language Resources and Evaluation), Istanbul.

Collins, M. (1999). Head-driven statistical models for natural language parsing. PhD thesis, University

of Pennsylvania.

de Marneffe, M. C., MacCartney, B., & Manning, C. D. (2006). Generating typed dependency parses

from phrase structure parses. In Proceedings of LREC.

Dorr, B. J. (1994). Machine translation divergences: A formal description and proposed solution.

Computational Linguistics, 20, 597–633.

Georgi, R., Xia, F., & Lewis, W. D. (2012). Improving dependency parsing with interlinear glossed text

and syntactic projection. In Proceedings of the 24th International Conference on Computational
Linguistics (COLING 2012), Mumbai, India.

Georgi, R., Xia, F., & Lewis, W. D. (2013). Enhanced and portable dependency projection algorithms

using interlinear glossed text. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (vol 2, Short Papers, pp. 306–311), Sofia, Bulgaria, August 2013.

Association for Computational Linguistics. http://www.aclweb.org/anthology/P13-2055.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., & Kolak, O. (2004). Bootstrapping parsers via syntactic

projection across parallel texts. Natural Language Engineering, 1(1), 1–15.

Hwa, R., Resnik, P., Weinberg, A., & Kolak, O. (2002). Evaluating translational correspondence using

annotation projection. In Proceedings of ACL 2002, July (2002).

Lewis, W. D. (2006). ODIN: A model for adapting and enriching legacy infrastructure. In Proceedings of
the E-Humanities Workshop, p. 137.

Lewis, W. D. & Xia, F. (2008). Automatically identifying computationally relevant typological features.

In Proceedings of IJCNLP.

Lewis, W. D., & Xia, F. (2010). Developing ODIN: A multilingual repository of annotated language data

for hundreds of the world’s languages. Journal of Literary and Linguistic Computing (LLC), 25(3),

303–319.

McDonald, R., Lerman, K., & Pereira, F. (2006). Multilingual dependency analysis with a two-stage

discriminative parser. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, pp 216–220. Association for Computational Linguistics.

Petrov, S., Das, D. & McDonald, R. (2012). A universal part-of-speech tagset. In Proceedings of LREC.

Volk, M., Göhring, A., Marek, T., & Samuelsson, Y. (2010). SMULTRON (version 3.0)—The Stockholm

MULtilingual parallel TReebank. http://www.cl.uzh.ch/research/paralleltreebanks/smultron_en.html.

An English-French-German-Spanish-Swedish parallel treebank with sub-sentential alignments.

Yarowsky, D., & Ngai, G. (2001). Inducing multilingual POS taggers and NP bracketers via robust

projection across aligned corpora. In Proceedings of NAACL, Stroudsburg, PA. Johns Hopkins

University.

Capturing divergence in dependency trees 739

123

http://www.aclweb.org/anthology/P13-2055
http://www.cl.uzh.ch/research/paralleltreebanks/smultron_en.html.

	Capturing divergence in dependency trees to improve syntactic projection
	Abstract
	Introduction
	Background
	Projection methods
	Interlinear glossed text
	Linguistic divergence

	Methodology
	Definitions
	Comparing dependency trees
	Defining Tree Operations
	O1: Remove
	O2: Merge
	O3: Swap

	Calculating tree matches after applying operations
	Improving projection algorithms
	Spontaneous reattachment
	Merge correction
	Swap correction

	Bootstrapping a parser
	Relationship to Dorr (1994)

	Experiments
	Data
	Match results
	Operation breakdown by POS
	Analyzing trees for post-processing rules
	Parsing experiments

	Discussion of results
	Match scores
	POS breakdowns
	Performance summary
	Remaining issues

	Conclusion and future work
	References


