From Aari to Zulu:

Massively Multilingual Creation of Language Tools Using Interlinear Glossed Text

Ryan Georgi
IBM Research, San Jose, CA
June 20th, 2016

The Problem

The Problem

(In Three Words)

The Problem

(In Three Words)

Resource Poor Languages

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)
- Distribution of language resources very skewed

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)
- Distribution of language resources very skewed

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)
- Distribution of language resources very skewed

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)
- Distribution of language resources very skewed

Resource Poor Languages

- Over 7,000 languages on the planet (Lewis, 2016)
- Distribution of language resources very skewed

Resource Poor Languages

Resource Poor Languages

- How to approach languages without a large corpus of annotated data?

Resource Poor Languages

- How to approach languages without a large corpus of annotated data?
- Can this approach be generalizable?

Outline

- Previous Work
- Methodology
- Tasks
- Conclusion

Previous Work

Previous Work

- Projection from parallel data
- (Yarowsky \& Ngai, 2001; Hwa et. al, 2005)

Previous Work

- Projection from parallel data
- (Yarowsky \& Ngai, 2001; Hwa et. al, 2005)
- Unsupervised, semi-supervised induction
- Word Clustering (Clark, 2003); Prototypes (Haghighi \& Klein, 2006)

Previous Work

- Projection from parallel data
- (Yarowsky \& Ngai, 2001; Hwa et. al, 2005)
- Unsupervised, semi-supervised induction
- Word Clustering (Clark, 2003); Prototypes (Haghighi \& Klein, 2006)
- Delexicalized transfer parsing
- (Zeman, 2008; McDonald et. al 2011, 2013)

Previous Work

- Projection from parallel data
- (Yarowsky \& Ngai, 2001; Hwa et. al, 2005)
- Unsupervised, semi-supervised induction
- Word Clustering (Clark, 2003); Prototypes (Haghighi \& Klein, 2006)
- Delexicalized transfer parsing
- (Zeman, 2008; McDonald et. al 2011, 2013)
- Leveraging typological similarities
- (Hana et. al, 2004; Feldman et. al 2006)

Why a New Approach?

Why a New Approach?

- Large quantities of data required for:
- Statistical alignment
- Unsupervised/Semi-supervised induction

Why a New Approach?

- Large quantities of data required for:
- Statistical alignment
- Unsupervised/Semi-supervised induction
- POS tags required for transfer parsing approach

Why a New Approach?

- Large quantities of data required for:
- Statistical alignment
- Unsupervised/Semi-supervised induction
- POS tags required for transfer parsing approach
- Language knowledge needed for similar language
- Typological similarity != Genetic Similarity (Georgi et. al 2010)

What is Interlinear Glossed Text?

Interlinear Glossed Text (IGT)

are possible but less common from orders that are not possible at all. Furthermore, languages occasionally exhibit more complex ordering constraints that are not easily represented in such formulae. For example, in Aari (Hayward 1990), an Omotic language spoken in Ethiopia, demonstratives more commonly follow the noun, as in (177a), but they only precede the noun if the noun is followed by a numeral, as in (177b).
(177)

b. keené	?aksí	dónq-ine-m
DEM.PLUR dog		
'these five dogs'		

Aari [aiw] - (Dryer, 2007)

Interlinear Glossed Text (IGT)

are possible but less common from orders that are not possible at all. Furthermore, languages occasionally exhibit more complex ordering constraints that are not easily represented in such formulae. For example, in Aari (Hayward 1990), an Omotic language spoken in Ethiopia, demonstratives more commonly follow the noun, as in (177a), but they only precede the noun if the noun is followed by a numeral, as in (177b).
(177)
b. keené ?aksí dónq-ine-m

DEM.PLUR dog five-DEF-ACC
'these five dogs'

Aari [aiw] - (Dryer, 2007)

- The Online Database of Interlinear Text (ODIN) Itewis \& Xio, 2001)
- 158,007 IGT instances
- 1,496 languages
- 2,027 documents

Why Use IGT?

keené Paksí dónq-ine-m
DEM.PLUR dog five-DEF-ACC
'these five dogs'

Why Use IGT?

$$
\begin{aligned}
& \text { keené Paksí dónq-ine-m } \\
& \text { DEM, PLUR dog five-DEF-ACC } \\
& \text { 'these five dogs' }
\end{aligned}
$$

- Gloss line contains grams

Why Use IGT?

```
keené Paksí dónq-ine-m
DEM.PLUR dog five-DEF-ACC
'these five dogs’
```

- Gloss line contains grams
- Morphemes (when present) often delineated

Why Use IGT?

keené Paksí dónq-ine-m
DEM.PLUR dog five-DEF-ACC
'these five dogs'

- Gloss line contains grams
- Morphemes (when present) often delineated
- Translation and gloss often have matching tokens

Why Use IGT?

- Gloss line contains grams
- Morphemes (when present) often delineated
- Translation and gloss often have matching tokens
- Can be used to align translation with language line

Why Use IGT?

- Gloss line contains grams
- Morphemes (when present) often delineated
- Translation and gloss often have matching tokens
- Can be used to align translation with language line
- ...and "project" information

Outline

- Previous Work
- Methodology
- Tasks
- Conclusion

Main Contributions

- I examine using IGT for three tasks:

Main Contributions

- I examine using IGT for three tasks:
- Word Alignment

Main Contributions

- I examine using IGT for three tasks:
- Word Alignment
- Part-of-Speech Tagging

Main Contributions

- I examine using IGT for three tasks:
- Word Alignment
- Part-of-Speech Tagging
- Dependency Parsing

Main Contributions Word Alignment

Main Contributions Word Alignment

- Heuristic alignment
- High precision word alignments with few instances

Main Contributions Word Alignment

- Heuristic alignment
- High precision word alignments with few instances
- Statistical approaches that leverage IGT format
- Utilize massively multilingual IGT database
- Demonstrate use of large quantities of IGT data from unrelated languages can improve alignment for resource-poor languages

Main Contributions Part-of-Speech Tagging

Main Contributions Part-of-Speech Tagging

- Projection-Based tagging suffers from:
- Poor word alignments
- Non-corresponding Projections

Main Contributions Part-of-Speech Tagging

- Projection-Based tagging suffers from:
- Poor word alignments
- Non-corresponding Projections
- Introduce classification-based approach
- Outperforms projection

Main Contributions Dependency Parsing

- Projection-based parsers compound errors:
- Word Alignment
- POS Tagging
- Non-Correspondance

Main Contributions Dependency Parsing

- Projection-based parsers compound errors:
- Word Alignment
- POS Tagging
- Non-Correspondance
- Analyze divergence to improve parses

Evaluation

Task
Word Alignment IGT

Evaluation

Task

Word Alignment IGT

IGT
POS Tagging
Monolingual

IGT
Monolingual

Data Overview

Resource Type	ODIN
IGT	\checkmark
POS Tags	
Dependency Structures	
Word Alignment	
\# Of Sentences	151,633
\# Of Languages	1,487

Data Overview

Resource Type	ODIN	XL-IGT
IGT	\checkmark	\checkmark
POS Tags		
Dependency Structures		\checkmark
Word Alignment		\checkmark
\# Of Sentences	151,633	796
\# Of Languages	1,487	7

Data Overview

Resource Type	ODIN	XL-IGT	RG-IGT
IGT	\checkmark	\checkmark	\checkmark
POS Tags			\checkmark
Universal			
Word Alignment		\checkmark	
\# Of Sentences	151,633	796	8
\# Of Languages	1,487	7	5

Data Overview

Resource Type	ODIN	XL-IGT	RG-IGT	UD-2.0
IGT	\checkmark	\checkmark	\checkmark	
POS Tags			\checkmark	\checkmark
Universal	Universal			
Dependency Structures		\checkmark		\checkmark
Word Alignment		\checkmark	\checkmark	
\# Of Sentences	151,633	796	82	85,625
\# Of Languages	1,487	7	5	8

Data Overview

Resource Type	ODIN	XL-IGT	RG-IGT	UD-2.0	HUTP
IGT	\checkmark	\checkmark	\checkmark		\checkmark
POS Tags			\checkmark	\checkmark	\checkmark
Universal	Universal	\checkmark Hindi			
Dependency Structures		\checkmark		\checkmark	\checkmark
Word Alignment		\checkmark	\checkmark		
\# Of Sentences	151,633	796	82	85,625	147
\# Of Languages	1,487	7	5	8	1

Data Overview By Language

Family	Language	ISO	ODIN	XL-IGT	RG-IGT	UD-2.0	HUTP
Afroasiatic	Hausa	hau	\checkmark	\checkmark			
Austronesian	Indonesian	ind	\checkmark			\checkmark	
	Malagasy	mlg	\checkmark	\checkmark			
Indo-European	Bulgarian	bul	\checkmark		\checkmark		
	French	fra	\checkmark		\checkmark	\checkmark	
	Gaelic	gla	\checkmark	\checkmark			
	German	deu	\checkmark	\checkmark	\checkmark	\checkmark	
	Hindi	hin	\checkmark				\checkmark
	Italian	ita	\checkmark		\checkmark	\checkmark	
	Spanish	spa	\checkmark		\checkmark	\checkmark	
	Swedish	swe	\checkmark			\checkmark	
	Welsh	cym	\checkmark	\checkmark			
Koreanic	Korean	kor	\checkmark	\checkmark		\checkmark	
Uto-Aztecan	Yaqui	yaq	\checkmark	\checkmark			

Tasks

Word Alignment

Part-of-Speech Tagging

Dependency Parsing

The INTENT System

The INTENT System

Word Alignment Approaches

- Heuristic-based Approach
- Statistical-based Approach

Heuristic Word Alignment

0	da	zo-ro	ge-re	wuo-ro	la	haane
3SG	PAST	run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

He/she was always running there collecting berries.
Dagaare [dga] (Beerman and Hellan, 2002):

Heuristic Word Alignment

He/she was always running there collecting berries.
Dagaare [dga] (Beerman and Hellan, 2002):

Heuristic Word Alignment

0	da	zo-ro	ge-re	wuo-ro	la	haane
3SG	PAST	run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

He/she was always running there collecting berries.
Dagaare [dga] (Beerman and Hellan, 2002):

Heuristic Word Alignment

0	da	zo-ro	ge-re	wuo-ro	la
3SG	PAST run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

Dagaare [dga] (Beerman and Hellan, 2002):

- String matches

Heuristic Word Alignment

Dagaare [dga] (Beerman and Hellan, 2002):

- String matches
- Stemmed String Matches

Heuristic Word Alignment

Dagaare [dga] (Beerman and Hellan, 2002):

- String matches
- Stemmed String Matches
- Word \rightarrow Gram matches

Heuristic Word Alignment

0	da	zo-ro	ge-re	wuo-ro	la	haane
3SG	PAST	run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

He/she was always running there collecting berries.
Dagaare [dga] (Beerman and Hellan, 2002):

- String matches
- Stemmed String Matches
- Word \rightarrow Gram matches
- Unmatched Tokens

Statistical Word Alignment

- Two targets for translation line:

Statistical Word Alignment

- Two targets for translation line:
- L-T: Language \rightarrow Translation Alignment \square
- Use L/T sentence pairs from the given language

Statistical Word Alignment

- Two targets for translation line:
- L-T: Language \rightarrow Translation Alignment \square
- Use L/T sentence pairs from the given language
- G-T: Gloss \rightarrow Translation Alignment

Statistical Word Alignment

- Two targets for translation line:
- L-T: Language \rightarrow Translation Alignment \square
- Use L/T sentence pairs from the given language
- G-T: Gloss \rightarrow Translation Alignment \square
- Gloss line is cross-linguistic "pseudo-language"

Statistical Word Alignment

- Two targets for translation line:
- L-T: Language \rightarrow Translation Alignment \square
- Use L/T sentence pairs from the given language
- G-T: Gloss \rightarrow Translation Alignment \square
- Gloss line is cross-linguistic "pseudo-language"
- Can use G/T sentence pairs from ALL languages

Statistical Word Alignment

- Two targets for translation line:
- L-T: Language \rightarrow Translation Alignment \square
- Use L/T sentence pairs from the given language
- G-T: Gloss \rightarrow Translation Alignment \square
- Gloss line is cross-linguistic "pseudo-language"
- Can use G/T sentence pairs from ALL languages
- (G-T+ALL ODIN) \square

Combining Statistical \& Heuristic Alignment

L-T \square
G-T \square

G-T + ALL ODIN \square

- Add word pairs from heuristic aligner to training data

Combining Statistical \& Heuristic Alignment

L-T $\square \square$ L-T + Heuristic
G-T $\square \square$ G-T + Heuristic
G-T + ALL ODIN $\square \square$ G-T + ALL ODIN + Heuristic

- Add word pairs from heuristic aligner to training data

Word Alignment

POS Tag Heuristic

a. Piarresek egin du etchea.

Peter-ERG make has house-ABS
"Peter built the house."
Basque [eus] - (Lafitte, 1962)

POS Tag Heuristic

Peter-ERG make has house-ABS

"Peter built the house."

POS Tag Heuristic

POS Tag Heuristic

POS Tag Heuristic

POS Tag Heuristic

VERB VERB
make has

built the
VERB DET

POS Tag Heuristic

POS Tag Heuristic

POS Tag Heuristic

a. Piarresek egin du etchea. Peter-ERG make has house-ABS
"Peter built the house."

Word Alignment

The INTENT System

The INTENT System

The INTENT System

POS Projection

0	da	zo-ro	ge-re	wuo-ro	la	haane
3SG	PAST	run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

He/she was always running there collecting berries.

POS Projection

0	da	zo-ro	ge-re	wuo-ro	la	haane
3SG PAST run-IMPERF	go-IMPERF collect-IMPERF FACT	berries				

- Use English POS tagger

POS Projection

- Use English POS tagger
- Obtain word alignment

POS Projection

- Use English POS tagger
- Obtain word alignment
- Project POS tags to language line.

POS Projection

			??		??	
0	da	zo-ro	$\mathrm{ge}-\mathrm{re}$	wuo-ro	1 a	haane
3SG	PAST	run-IMPERF	go-IMPERF	collect-IMPERF	FACT	berries

- Use English POS tagger
- Obtain word alignment
- Project POS tags to language line.
- Words that remain unaligned:
- Tag with "UNK"?
- Tag with most common tag? (NOUN?)

POS Tagging

- A few unaligned words is fine, but can be worse:

Chintang [ctn] (Bickel et. al, 2007):
numphurìk bhir-ce mett-ma-ce par-ch-a
a.place precipice-ns do.with/to-INF-3nsP must-NPST-3s We have to be sensible about the Namphuruk cliff.

POS Tagging

- A few unaligned words is fine, but can be worse:

Chintang [ctn] (Bickel et. al, 2007):

```
numphurìk bhir-ce
mett-ma-ce
par-ch-a
a.place precipice-ns do.with/to-INF-3nsP must-NPST-3s
We have to be sensible about the Namphuruk cliff.
```

- No clear heuristic alignment

POS Tagging

- A few unaligned words is fine, but can be worse:

Chintang [ctn] (Bickel et. al, 2007):

```
numphurìk bhir-ce
mett-ma-ce
par-ch-a
a.place precipice-ns do.with/to-INF-3nsP must-NPST-3s
We have to be sensible about the Namphuruk cliff.
```

- No clear heuristic alignment
- ...but still plenty of clues in gloss

POS Tagging

- A few unaligned words is fine, but can be worse:

Chintang [ctn] (Bickel et. al, 2007):

```
numphurìk bhir-ce
mett-ma-ce
par-ch-a
a.place precipice-ns do.with/to-INF-3nsP must-NPST-3s
We have to be sensible about the Namphuruk cliff.
```

- No clear heuristic alignment
- ...but still plenty of clues in gloss

Gloss-Line Feature Extraction

Gloss-Line Feature Extraction

- Most common tag for English words in gloss

Gloss-Line Feature Extraction

- Most common tag for English words in gloss
- Each "sub-word," including grams

DET:1 NOUN:1	NOUN:1 ns:1 precipice:1	$\begin{array}{rrr}\text { VERB:1 } & \text { do:1 } \\ \text { ADP:1 } & \text { with:1 } \\ \text { INF:1 } & \text { to } \\ \text { 3nsP:1 }\end{array}$	VERB:1 must:1 NPST:1 $3 s: 1$
a.place	precipicen	do.with/to-INF-3nsP	must-NPST-3

Gloss-Line Feature Extraction

- Most common tag for English words in gloss
- Each "sub-word," including grams
- Has a Number

VERB:1 must:1
NPST:1
$3 \mathrm{~S}: 1$
NUM:1
mUSt-NPST-3s

Gloss-Line Feature Extraction

- Most common tag for English words in gloss
- Each "sub-word," including grams
- Has a Number
- ...and more
DET:1
NOUN:1
a.place


```
VERB:1 must:1 
```


All Features

subWords	[.] [-] or $[=]$ delineated tokens
alignedTag	Tag for heuristically aligned translation word
wordHasNumber	Contains a numeral
suffix	last 1,2,3 characters of word
prefix	first 1,2,3 characters of word
numSubwords	\# of subWords
prevSubwords	subWords in previous token
nextSubwords	subWords in following token
dictTag	If subWord is English: most frequent POS tag
prevDictTag	dictTag for prev word
nextDictTag	dictTag for next word

All Features

subWords	[.] [-] or [=] delineated tokens
alignedTag	Tag for heuristically aligned translation word
wordHasNumber	Contains a numeral
suffix	last 1,2,3 characters of word
prefix	first 1,2,3 characters of word
numSubwords	\# of subWords
prevSubwords	subWords in previous token
nextSubwords	subWords in following token
dictTag	If subWord is English: most frequent POS tag
prevDictTag	dictTag for prev word
nextDictTag	dictTag for next word

Obtaining Labeled Training Data

Obtaining Labeled Training Data

- Manual Annotation -

Obtaining Labeled Training Data

- Manual Annotation

- Automatic Projection \square

Obtaining Labeled Training Data

- Manual Annotation

- Automatic Projection \square

U-mfana	u-zo-fund-a	i-ncwadi.
1-1.boy	1.sbj-fut-study-fv	9-9.book

The boy will study the book.
Zulu [zul] - (Buell, 2003)

Obtaining Labeled Training Data

- Manual Annotation

- Automatic Projection \square

U-mfana	u-zo-fund-a	i-ncwadi.
1-1.boy	1.sbj-fut-study-fv	9-9.book
The boy will study the book.		
NOUN	VERB \quad NOUN	

Zulu [zul] - (Buell, 2003)

Obtaining Labeled Training Data

- Manual Annotation \square
- Automatic Projection \square

Zulu [zul] - (Buell, 2003)

POS Tagging Results: IGT

\square Classifier: Projected Labels
Projection
\square Classifier: Manual Labels

POS Tagging

- Now have POS tags on language of interest

POS Tagging

- Now have POS tags on language of interest
- POS Tagging IGT instances interesting, but limited

POS Tagging

- Now have POS tags on language of interest
- POS Tagging IGT instances interesting, but limited
- More general application: novel monolingual data

POS Tagging

- Now have POS tags on language of interest
- POS Tagging IGT instances interesting, but limited
- More general application: novel monolingual data
- Use POS tags from language line to train monolingual tagger

POS Tagging

- Now have POS tags on language of interest
- POS Tagging IGT instances interesting, but limited
- More general application: novel monolingual data
- Use POS tags from language line to train monolingual tagger
- Evaluate w/Universal Dependency Treebank (McDonald et. al, 2013)

Monolingual POS Tagging

- Four settings:

Monolingual POS Tagging

- Four settings:
- Projection

Monolingual POS Tagging

- Four settings:
- Projection
- All instances: with unaligned words \square

Monolingual POS Tagging

- Four settings:
- Projection
- All instances: with unaligned words
- Filtered instances: no unaligned words

Monolingual POS Tagging

- Four settings:
- Projection
- All instances: with unaligned words
- Filtered instances: no unaligned words

- Classification:

Monolingual POS Tagging

- Four settings:
- Projection
- All instances: with unaligned words
- Filtered instances: no unaligned words

- Classification:
- Projected training tokens \square

Monolingual POS Tagging

- Four settings:
- Projection
- All instances: with unaligned words
- Filtered instances: no unaligned words

- Classification:
- Projected training tokens
- Manual training tokens \square

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data
 All Sentences

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data All Sentences

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data All Sentences

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data All Sentences

\square Classifier: Manual Labels

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data
All Sentences

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data All Sentences

\square Supervised: 1K Tokens

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data All Sentences

Monolingual POS Tagging

- Another variable in using the UD-2.0 corpus:
- Corpus represents a large shift in domain

Monolingual POS Tagging

- Another variable in using the UD-2.0 corpus:
- Corpus represents a large shift in domain
- UD-2.0:
- 20.8 words/sentence
- Newswire

Monolingual POS Tagging

- Another variable in using the UD-2.0 corpus:
- Corpus represents a large shift in domain
- UD-2.0:
- 20.8 words/sentence
- Newswire
- IGT sentences
- 6.1 words/instance
- Illustrative examples

Monolingual POS Tagging

- Another variable in using the UD-2.0 corpus:
- Corpus represents a large shift in domain
- UD-2.0:
- 20.8 words/sentence
- Newswire
- IGT sentences
- 6.1 words/instance
- Illustrative examples
- Try evaluating also on short UD-2.0 sentences

Monolingual POS Tagging

POS Tagging Methods on UD-2.0 Test Data Sentences ≤ 10 Words

The INTENT System

The INTENT System

The INTENT System

DS Projection

The teacher gave a book to the boy yesterday

Rhoddod yr athro lyfr i'r | bachgen |
| :---: |
| Welsh [cym] $-($ Bailyn, 2004 $)$ |

DS Projection

DS Projection

DS Projection

Rhoddod yr athro lyfr i'r bachgen ddoe

DS Projection

DS Projection

DS Projection

Rhoddodd

Dependency Parsing: Projection

Language Divergence

Language Divergence

- Direct Correspondence Assumption (DCA) (Hwa et. al, 2005)

Language Divergence

- Direct Correspondence Assumption (DCA) (llwa et. al, 2005)
- Language Divergence (Dorr, 1994)

Divergence Types

Head-Switching Divergence

Promotional Divergence

Divergence Types

Structural Divergence

English Spanish
Juan entró en la casa
("John entered in the house")

Divergence Types

Conflational Divergence

English	Spanish
I stabbed John	Yo le di puñaladas a Juan
	("I gave knife-wounds to John")

Addressing DS Divergence

- Results for DS projection on IGT show divergence
- Learn when projection is unreliable?

Alignment Types

Swap

Alignment

Alignment Types

Swap

(Addresses Head-Switching)

Alignment Types

Merge

Alignment

Alignment Types

Merge

(Addresses Conflational Divergence)

Alignment

Alignment Types

Spontaneous

Alignment

Alignment Types

Spontaneous

$$
s_{i} \hookrightarrow-----\rightarrow t_{i}
$$

(Addresses Structural Divergence)

Alignment

Alignment Types

Match

Alignment

Alignment Types

Match

(No Divergence)

Alignment

Projection-Enhanced Parsing

\square Malt Baseline \square Projection
\square Malt + Projection

Measuring and "Correcting" Divergence

- Based on the idea of DUSTer (Dorr, 2002)
- Automatically rewrite dependency structures to pseudo-English that is more similar to target language

Tree Operations

Swap

Tree Operations

Swap

Tree Operations

Merge

Tree Operations

Merge

Tree Operations

Remove

Tree Operations

Remove

Resolving Divergence

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Resolvino Divereenee

Detect Spontaneous Nodes / Remove

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Resolving Diveroence

Detect Spontaneous Nodes / Remove

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Resolving Divergence

Detect "Merge" Alignments / Merge

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Resolving Diveroence

Detect "Merge" Alignments / Merge

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Resolving Divergence

All Remaining Alignments Match

English:

Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu:

mohana ne kala Arif se mInA ko kiwAba xilavAyI

Measuring Divergence

Learning Divergence

Learning Divergence

- Measured swaps, merges, and removals

Learning Divergence

- Measured swaps, merges, and removals
- Analyze the patterns of operations to learn postprocessing rules

Multiply-Aligned Tokens

- For each $P O S_{i}$, measure attachment direction
- At test time, choose head token from previous results

$$
\begin{aligned}
& \text { POS }_{i} \rightarrow P(\text { right })=75 \% \\
& \text { POS }_{i} \rightarrow P(\text { left })=25 \%
\end{aligned}
$$

Swapped Tokens

- For each ($P O S_{i}, P O S_{j}$) pair
- Measure frequency of swap operation
- Apply swap at test time if
- Occurs more than 3 times
- More than 60% of occurrences:

$$
\begin{aligned}
& \left(\text { POS }_{i}, \text { POS }_{j}\right) \rightarrow P(\text { swap })=75 \% \\
& \left(\text { POS }_{1}, \mathrm{POS}_{m}\right) \rightarrow \mathrm{P}(\text { swap })=10 \% \\
& \left.\left(\text { POS }_{p}, \text { POS }_{q}\right) \rightarrow P(\text { swap })=100 / 33\right] \\
& {[1 / 10]} \\
& {[1 / 1]}
\end{aligned}
$$

Spontaneous Tokens

- For each lexical item (t_{i})
- Measure attachment direction
- At test time:
- Attach in majority direction
- Backoff: attach in overall language-preferred direction

$$
\begin{aligned}
t_{n} \rightarrow P(\text { right }) & =75 \% \\
t_{m} \rightarrow P(\text { left }) & =\text { [unseen }] \\
\text { Poverall }(\text { left }) & =54 \%
\end{aligned}
$$

Applying Rules to Projection

Applying Rules to Projection

- Two baselines:

Applying Rules to Projection

- Two baselines:
- Prefer leftward attachment for merge/spontaneous

Applying Rules to Projection

- Two baselines:
- Prefer leftward attachment for merge/spontaneous \square
- Prefer rightward attachment for merge/spontaneous \square

Applying Rules to Projection

- Two baselines:
- Prefer leftward attachment for merge/spontaneous \square
- Prefer rightward attachment for merge/spontaneous
- No swap handling

Applying Rules to Projection

- Two baselines:
- Prefer leftward attachment for merge/spontaneous
- Prefer rightward attachment for merge/spontaneous
- No swap handling
- Use learned merge, spontaneous, and swap rules \square

Rule-Enhanced Projection

\squareBaseline (Assume Left Attachments) Baseline (Assume Right Attachments)

(Re)Informing the Parser

Projection Options

Baseline (Assume Left Attachments)
\square
Baseline (Assume Right Attachments)
Use Learned Patterns
\square

(Re)Informing the Parser

Projection Options

Baseline (Assume Left Attachments)
Baseline (Assume Right Attachments)
Use Learned Patterns
\square

Baseline (Assume Left Attachments)
\square
\square Baseline (Assume Right Attachments)
Use Learned Patterns
No Projection Features

Parser with Improved Projections

No Projection Features \square Baseline Projection Features (Left) Baseline Projection Features (Right)

Monolingual DS Parsing

- Use IGT-projected DSs to train monolingual parser
- Evaluate parser on the Universal Dependency corpus

Monolingual DS Parsing

Alignment Method

\square G-T + All ODIN
\square G-T + All ODIN + Heur

\square
Heuristic
\square Heuristic + POS Matching

Outline

- Previous Work
- Methodology
- Tasks
- Conclusion

Summary of Results

Word Alignment

- $0.85 \mathrm{~F}_{1}$ score for heuristic alignment
- $0.83 \mathrm{~F}_{1}$ score for improved statistical alignment
- 0.49 F_{1} score for traditional approach

Summary of Results

Part-of-Speech Tagging

- 92\% accuracy on IGT
- With classifier trained on manual gloss-line tags
- 67\% using projection
- 70\% accuracy on monolingual data
- Using classifier-bootstrapped taggers
- 56% using projection

Summary of Results

Dependency Parsing

- Analyzed language divergence
- 87% accuracy for projection-feature enhanced parser
- 84% for projection alone
- $\mathbf{6 7 \%}$ for baseline parser
- 89% accuracy for enhanced parser w/rewrite rules
- $\mathbf{8 8 \%}$ accuracy for enhanced projection

The INTENT System

Using INTENT

- Software package is available
- Code available at rgeorgi.co/intent
- Online demo at rgeorgi.co/intentweb

Impact of INTENT

Impact of INTENT

- Used to enrich ODIN v2.1

Impact of INTENT

- Used to enrich OdIN v2.1
- Used at UW Linguistics Seminar SPR'15:
- Computational Methods in Language Documentation

Impact of INTENT

- Used to enrich OdIN v2.1
- Used at UW Linguistics Seminar SPR'15:
- Computational Methods in Language Documentation
- Being used to visualize enriched data in ODIN editor

Impact of INTENT

- Used to enrich OdIN v2.1
- Used at UW Linguistics Seminar SPR'15:
- Computational Methods in Language Documentation
- Being used to visualize enriched data in ODIN editor
- Will be used for AGGREGATION Phase 2

Future Work

Future Work

- Word Alignment:
- Use IGT-extracted alignments to bootstrap parallel data
- "Clue-Based" alignment (Tiedemann 2003)

Future Work

- Word Alignment:
- Use IGT-extracted alignments to bootstrap parallel data
- "Clue-Based" alignment (Tiedemann 2003)
- POS tagging:
- Use extracted POS tags to constrain induction approaches
- (Haghighi \& Klein 2006, Mann \& McCallum 2008)

Future Work

- Word Alignment:
- Use IGT-extracted alignments to bootstrap parallel data
- "Clue-Based" alignment (Tiedemann 2003)
- POS tagging:
- Use extracted POS tags to constrain induction approaches
- (Haghighi \& Klein 2006, Mann \& McCallum 2008)
- Dependency Parsing
- Use modified parser for partial trees (Spreyer \& Kuhn, 2009)
- Clustering/Similarity approaches (Koo et. al, 2008; Mirroshandel et. al., 2012)

Conclusion

Conclusion

- Utilized IGT's unique format to provide improvements over uninformed methods

Conclusion

- Utilized IGT's unique format to provide improvements over uninformed methods
- Created generalized IGT enrichment system covering 1,500+ languages

Conclusion

- Utilized IGT's unique format to provide improvements over uninformed methods
- Created generalized IGT enrichment system covering 1,500+ languages
- Demonstrated potential for IGT-bootstrapped NLP tools in resource-poor settings

Thank You

Related Publications

Xia, F., \&al. - Enriching a massively multilingual database of interlinear glossed text.
Language Resources and Evaluation (2016).
Xia, F., \&al. - Enriching, Editing, and Representing Interlinear Glossed Text.
CICLing 2015.
Georgi, R., \&al. - Enriching Interlinear Text using Automatically Constructed Annotators. LaTeCH 2015.

Georgi, R., \&al.- Capturing divergence in dependency trees to improve syntactic projection. Language Resources and Evaluation (2014).

Georgi, R., \&al. - Improving Dependency Parsing with Interlinear Glossed Text and Syntactic Projection.
COLING 2012.
Georgi, R., \&al. - Measuring the Divergence of Dependency Structures Cross-Linguistically to Improve Syntactic Projection Algorithms.
LREC 2012.
Georgi, R., \&al. - Enhanced and Portable Dependency Projection Algorithms Using Interlinear Glossed Text.
ACL 2013.

Related Software

INTENT rgeorgi.co/intent

ODIN Editor rgeorgi.co/xigtedit

ODIN v2.1 rgeorgi.co/odin

Key References

1. Nicoletta Calzolari, Claudia Soria, Irene Russo, Francesco Rubino, and Riccardo Del Gratta. 2010. The Language Resources and Evaluation (LRE) Map. flarenet.eu.
2. Paul M Lewis, Gary F Simons, and Charles D Fennig, editors. 2016. Ethnologue. SIL International, Dallas, Texas, 19 edition. https://www.ethnologue.com/
3. Fei Xia, William D Lewis, Michael Wayne Goodman, Glenn Slayden, Ryan Georgi, Joshua Crowgey, and Emily M Bender. 2016. Enriching a massively multilingual database of interlinear glossed text. Language Resources and Evaluation:1-29, January.
4. Jörg Tiedemann. 2003. Combining clues for word alignment. In The Tenth Conference of The European Chapter of the Association for Computational Linguistics, volume 1, pages 339-346, Morristown, NJ, USA, April. Association for Computational Linguistics.
5. William D Lewis and Fei Xia. 2010. Developing ODIN: A Multilingual RePOSitory of Annotated Language Data for Hundreds of the World's Languages. Literary and Linguistic Computing, 25(3):303-319, August.

Key References

6. Emily M Bender, Michael Wayne Goodman, Joshua Crowgey, and Fei Xia. 2013. Towards Creating Precision Grammars from Interlinear Glossed Text: Inferring Large-Scale Typological Propertie. In Proceedings of the ACL workshop on Language Technology for Cultural Heritage, Social Sciences and Humanities, Sofia, Bulgaria.
7. Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. 2013. Universal Dependency Annotation for Multilingual Parsing. In Proceedings of the 51 st Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Sofia, Bulgaria.
8. Bonnie Jean Dorr. 1994. Machine translation divergences: a formal description and proposed solution. Computational Linguistics, 20:597-633, December.
9. Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. 2005. Bootstrapping parsers via syntactic projection across parallel texts. Natural Language Engineering, 11 (03):311-325, September.

Key References

10.Seyed Abolghasem Mirroshandel, Alexis Nasr, and Joseph Le Roux. 2012. Semisupervised dependency parsing using lexical affinities. In ACL 2012, pages 777785.

IGT References

1. Matthew S Dryer. 2007. Noun phrase structure. In Timothy Shopen, editor, Language Typology and Syntactic Description, volume 2, pages 151-205. Language typology and syntactic description, Cambridge, United Kingdom, 2nd edition, October.
2. Dorothee A Beermann and Lars Hellan. 2002. VP-Chaining in Oriya. In Stanford Linguistic Association and CSLI.
3. Pierre Lafitte. 1962. Grammaire basque. Editions des "amis du musee basque" et "lkas," Bayonne, edition.

POS Projection Confusion Matrix

	ADJ	ADP	ADV	CONJ	DET	NOUN	NUM	PRON	PRT	VERB	X	PREC
ADJ	57	1	0	0	2	4	0	6	0	0	0	0.81
ADP	0	52	2	10	2	0	0	6	2	2	0	0.68
ADV	0	2	69	0	2	5	0	0	0	0	0	0.88
CONJ	0	0	0	20	0	0	0	0	0	0	0	1
DET	2	6	0	2	370	0	0	6	2	0	0	0.95
NOUN	4	1	10	0	2	649	2	4	0	26	0	0.93
NUM	0	0	0	0	0	0	16	2	0	0	0	0.89
PRON	0	0	2	0	14	0	0	219	0	6	0	0.91
PRT	0	4	0	0	0	0	0	0	26	2	0	0.81
VERB	1	2	1	0	0	20	0	2	0	574	0	0.96
X	0	0	0	0	0	0	0	25	0	0	0	0
Unaligned	8	48	24	4	56	58	2	50	18	114	0	
\% Unaligned	11.1	41.4	22.2	11.1	12.5	7.9	10	15.6	37.5	15.7	0	
REC	0.79	0.45	0.64	0.56	0.83	0.88	0.8	0.68	0.54	0.79	0	

Classifier Confusion Marrix

	ADJ	ADP	ADV	CONJ	DET	NOUN	NUM	PRON	PRT	VERB	X	PREC
ADJ	18	0	0	0	0	0	0	2	0	0	0	0.9
ADP	0	40	1	6	2	0	0	2	9	1	0	0.66
ADV	1	0	27	0	1	0	0	0	0	0	0	0.93
CONJ	0	0	0	4	0	0	0	0	0	0	0	1
DFT	0	0	0	0	112	3	0	1	1	0	0	0.96
NOUN	3	0	6	0	3	204	1	2	1	7	0	0.9
NUM	0	0	0	0	0	0	5	0	0	0	0	1
PRON	0	0	0	0	3	0	0	93	0	0	0	0.97
PRT	0	0	0	0	0	0	0	0	3	0	0	1
VERB	0	1	0	0	0	4	0	0	0	211	1	0.97
X	0	0	0	0	0	0	0	0	0	0	0	0
REC	0.82	0.98	0.79	0.4	0.92	0.97	0.83	0.93	0.21	0.96	0	

