
Noname manuscript No.
(will be inserted by the editor)

Enriching a Massively Multilingual Database of
Interlinear Glossed Text

Fei Xia · William D. Lewis · Michael
Wayne Goodman · Glenn Slayden ·
Ryan Georgi · Joshua Crowgey · Emily
M. Bender

Received: date / Accepted: date

Abstract The majority of the world’s languages have little to no NLP re-
sources or tools. This is due to a lack of training data (“resources”) over which
tools, such as taggers or parsers, can be trained. In recent years, there have
been increasing efforts to apply NLP methods to a much broader swath of the
world’s languages. In many cases this involves bootstrapping the learning pro-
cess with enriched or partially enriched resources. We propose that Interlinear
Glossed Text (IGT), a very common form of annotated data used in the field of
linguistics, has great potential for bootstrapping NLP tools for resource-poor
languages. Although IGT is generally very richly annotated, and can be en-
riched even further (e.g., through structural projection), much of the content
is not easily consumable by machines since it remains “trapped” in linguistic

This material is partly supported by the National Science Foundation under Grant No. BCS-
1160274 and BCS-0748919, and Singapore Ministry of Education under Tier 2 Grant No.
MOE2013-T2-1-016. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation. We would like to thank Sebastian Nordhoff for discussion on
the Xigt format and issues with the original IGT data, and anonymous reviewers for helpful
comments. We would also like to thank the Linguist List (http://linguistlist.org/) for
hosting the ODIN database.

Fei Xia
University of Washington
PO Box 352425, Seattle, WA 98195, USA
Tel: 206-543-9764
Fax: 206-685-7978
E-mail: fxia@uw.edu

William D. Lewis
Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

Michael Wayne Goodman, Glenn Slayden, Ryan Georgi, Joshua Crowgey, and Emily M.
Bender
University of Washington
PO Box 352425, Seattle, WA 98195, USA

http://linguistlist.org/

2 Fei Xia et al.

scholarly documents and in human readable form. In this paper, we describe
the expansion of the ODIN resource—a database containing many thousands
of instances of IGT for over a thousand languages. We enrich the original IGT
data by adding word alignment and syntactic structure. To make the data in
ODIN more readily consumable by tool developers and NLP researchers, we
adopt and extend a new XML format for IGT, called Xigt. We also develop
two packages for manipulating IGT data: one, INTENT, enriches raw IGT
automatically, and the other, XigtEdit, is a graphical IGT editor.

Keywords Resource-poor languages · Interlinear glossed text · ODIN

1 Introduction

Of the world’s 7,000+ spoken languages, only a very small fraction have text
resources substantial enough to allow for the training of NLP tools, such as
part-of-speech (POS) taggers and parsers. Developing enriched resources, e.g.,
treebanks and POS-tagged corpora, which allow supervised training of such
tools, is expensive and time-consuming. In recent years, work has been done
to bootstrap the development of such resources for resource-poor languages by
tapping the enriched content of a better resourced language, and, through some
form of alignment, “projecting” annotations onto data for the resource-poor
language. Some studies have focused on the typological similarity of languages,
using cognates and similar word forms in typologically similar languages, to
bridge between languages and to build tools and resources (Hana et al, 2006;
Feldman et al, 2006). Other work has relied on parallel corpora and bitexts,
where one language of a corpus is highly resourced, and annotations are pro-
jected onto the lesser resourced language(s) (Yarowsky and Ngai, 2001; Hwa
et al, 2005). A challenge to this approach is that there might not be a large
enough supply of bitexts for both languages to allow for the training of a
high-quality statistical word aligner.

Recent work has been done on transferring dependency structures (Täckström
et al, 2013; McDonald et al, 2013; Xiao and Guo, 2015) with promising re-
sults; however, these methods rely on delexicalized approaches where POS tags
are known for both languages. Other studies, such as Das and Petrov (2011);
Täckström et al (2012); Ma and Xia (2014), do not rely upon POS tags be-
ing available to perform transfer between languages, but still require a large
amount of parallel data to achieve good results.

In our previous studies (Georgi et al, 2013, 2014), we proposed to use
linguistically annotated data, specifically Interlinear Glossed Text (IGT), to
project annotations from a highly resourced language to one or more under-
resourced languages, potentially hundreds at a time. Since IGT is a data format
commonly used in the field of linguistics, and because linguists study thou-
sands of the world’s languages, the possibility exists to build resources for a
sizable percentage of the world’s languages. The problem is that IGT is typ-
ically locked away in scholarly linguistic papers, and not easily accessible to
NLP researchers who might otherwise want access to the data. The Online

Enriching a Massively Multilingual Database of Interlinear Glossed Text 3

Database of Interlinear text (ODIN) (Lewis and Xia, 2010), a database of
over 200,000 instances of IGT for more than 1,500 languages, tackles the issue
of extracting IGT from scholarly resources, but focuses more on presenting
the captured content for human consumption and query, rather than for sub-
sequent automated consumption. By taking the content of ODIN, enriching
it (e.g., through projected annotations), and reformatting it into a machine
readable form, enriched IGT becomes a much more useful resource for boot-
strapping NLP tools. IGT is particularly of interest for projection in that it is
a resource that is readily available for languages without comprehensive par-
allel corpora, and the f-scores for word alignment on IGT instances can be as
high as 94.0% without requiring large parallel corpora (Lewis and Xia, 2010).

In this paper, we begin with an overview of ODIN in Section 2. Next, we
describe, in Section 3, the process of enriching the IGT data in ODIN and
demonstrate that the enriched IGT data can be used to bootstrap NLP tools
such as parsers. In Section 4, we review Xigt, a new XML format for repre-
senting enriched IGT data, and discuss the extensions we have made to Xigt
to facilitate the manipulation of the enriched IGT data. Finally, in Sections 5
and 6, we introduce two packages that we have developed for processing IGT:
the first one, INTENT, enriches raw IGT automatically, and the second one,
XigtEdit, is a graphic editor that the annotators can use to edit enrich IGT
in the Xigt format. The ODIN data (including IGT in both its original and
enriched forms) and all the packages for processing IGT data are available to
the public.1 By making these tools, and the resulting data, available to the
NLP community, we open the door to a much wider panoply of the world’s
languages for NLP research.

2 Building ODIN

IGT is a common format that linguists use to present language data relevant
to a particular analysis. It is most commonly presented in a three-line form, a
sample of which is shown in Ex. (1). The first line, the language line, presents
data from the language in question, and is either phonetically encoded or
transcribed in the language’s native orthography or a transliteration thereof.
The second line, the gloss line, contains a morpheme-by-morpheme or word-by-
word gloss for the data on the language line. The third line, the translation line,
contains a translation of the first line, often into a resource-rich language such
as English. There could be additional information in IGT such as citations and
language names. In Ex. (1), Bailyn (2001) is the source of the IGT instance,
and cym is the ISO 639-3 language code for Welsh.

(1) Rhoddodd
gave-3sg

yr
the

athro
teacher

lyfr
book

i’r
to-the

bachgen
boy

ddoe
yesterday

“The teacher gave a book to the boy yesterday” (Bailyn, 2001) [cym]

1 http://depts.washington.edu/uwcl/packages/

http://depts.washington.edu/uwcl/packages/

4 Fei Xia et al.

The mechanical processes for constructing a database of interlinear text
such as ODIN were first described in (Lewis, 2003). Lewis (2003) observed
that IGT is a rich source of linguistic markup, and a collection of harvested
IGT could be treated as a gateway to the construction of a resource repre-
senting the conceptual space of the field of linguistics, such as an ontology of
linguistic concepts (Lewis et al, 2001; Farrar and Langendoen, 2003). It quickly
became clear that the database of IGT itself was directly of use to the field
of linguistics, in addition to secondary resources like the ontologies derived
from it (Xia and Lewis, 2008; Lewis and Xia, 2008a). The ODIN database was
created in two stages: automatic construction, followed by manual correction.

2.1 Automatic construction

The automatic construction stage has three steps. First, we crawl the Web
for linguistic documents and collect those documents that most likely contain
IGT. This is done by throwing queries against an existing search engine, ex-
tracting the relevant URLs from the results of the queries, crawling the pages
returned (i.e., searching returned pages for relevant URLs), and downloading
the pages and documents that contain IGT. Good queries usually use strings
contained within IGT itself. For instance, the gloss line in IGT often contains
grams2 (“grammatical morphemes”, e.g., NOM, ACC, ERG, etc.), and the
most successful strategy involves using the highest frequency grams as search
terms.

Second, IGT within the discovered documents is detected and extracted.
We treat IGT detection as a sequence labeling problem, and apply machine
learning methods to the task: first, we train a learner and use it to tag each
line in a document with a BIO tag, and then we convert the best tag sequence
into a span sequence. The feature set includes word n-grams, shapes of a
line (e.g., whether the line starts with an example number), and other cues
for the presence of IGT. When trained on 41 documents containing 1573 IGT
instances, which we subsequently tested on 10 documents, the f-scores for exact
and partial span match on the test data are 81.7% and 96.8% respectively (Xia
and Lewis, 2008).

Third, each extracted IGT instance is assigned a language name and a
language code. While existing methods for language ID perform very well in
a typical language ID setting (e.g., ID across a small set of languages), they
all require training data in the relevant languages in order to build a language
model or a character n-gram list. They do not work well in our setting because
the number of languages represented by IGT on the Web is in the thousands
and, likewise, for many of these languages we have no training data. To address
this challenge, we proposed to treat language identification as a coreference

2 The first attested use of the word gram in the context of IGT that we are aware of
is in (Bybee and Dahl, 1989). Bybee and Dahl used the term gram to refer to morphemes
that have grammatical functions in a language. Here, and elsewhere, we use the term gram
to refer to the annotation used by linguists to refer to these morphemes.

Enriching a Massively Multilingual Database of Interlinear Glossed Text 5

Range of # of # of IGT % of IGT
IGT instances languages instances instances

> 10000 3 (1) 36,691 (10,814) 19.39 (6.88)
1000-9999 37 (31) 97,158 (81,218) 51.34 (51.69)

100-999 122 (139) 40,260 (46,420) 21.27 (29.55)
10-99 326 (460) 12,822 (15,650) 6.78 (9.96)

1-9 838 (862) 2,313 (3,012) 1.22 (1.92)

total 1326 (1,493) 189,244 (157,114) 100 (100)

Table 1 The language distribution of IGT instances in ODIN after stage 1 and (stage 2).
Stage 1 is the automatic construction of IGT instances extracted from 2868 documents, with
language IDs assigned by the language ID system. Stage 2 is the manual correction of IGT
instances extracted from 2025 documents, with language IDs selected by human correction
of the language ID system output.

resolution task, where an IGT instance is linked to a language name that
appears in the same document. When trained on 1372 IGT instances from
125 languages and tested on 1516 instances (only 55.5% of which belong to a
language that appears in the training set), the accuracy is 83.1%, much higher
than the 55.5%, the upper bound of any language ID algorithm (including the
standard n-gram based algorithm) that relies on having training data for the
languages that the test data belong to (Xia et al, 2009).

We ran the IGT detection and language ID systems on three thousand
IGT-bearing documents crawled from the Web and the extracted IGTs were
stored in the ODIN database. Table 1 shows the language distribution of the
IGT instances in the database according to the output of the language ID
system. For instance, the third row says that 122 languages each have 100 to
999 IGT instances, and the 40,260 instances in this bin account for 21.3% of
all IGT in the ODIN database.

2.2 Manual correction

To ensure the high quality of the ODIN database, we manually corrected the
output of Steps 2 and 3 of the automatic construction stage. This was done in
three steps.

First, the annotators corrected the boundary of IGT instances found by
the IGT detection module. In addition, they labeled each line in each IGT
instance with a xx-yy tag. The xx part is the main tag, indicating whether
the line is a language line (L), a gloss line (G), a translation line (T), a blank
line (B), or a line with other information such as the citation or linguistic
construction name (M). The yy part is called the secondary tag; it provides
additional properties of the line; for instance, CR means that the current line
was corrupted when the document retrieved by the crawler was converted from
a PDF file to a text file by an off-the-shelf PDF-to-text converter. The tags
can be used for automatic enrichment of IGT instances, as discussed in the
next section.

6 Fei Xia et al.

Our automatic language ID module labeled each IGT instance with a lan-
guage name and an ISO 639-3 language code. The annotators corrected the
language name in a second pass through the data and the language code in a
third pass. The reason that we separated the two processes is that the mapping
from language names to language codes is many-to-many and must be done
by a linguist who can choose the correct language code for an ambiguous lan-
guage name. See (Xia et al, 2010) for more information about these correction
processes.

We have finished manual correction of more than 83% of the IGT instances
in ODIN. The language distribution of this subset of the data is in parentheses
in Table 1. Notice that the number of languages in this subset is higher than
the number of languages in stage 1. That is because our automatic language
ID module maps an ambiguous language name to the most common language
code associated with the name. This process is error-prone; manual correction
reveals that the ODIN data actually covers more languages than indicated by
the automatic construction stage.

Although the canonical form of an IGT instance includes a language line
(L), a gloss line (G), and a translation line (T), as noted earlier, linguists
often do not follow this canonical form, especially if they show multiple IGT
instances in a group. For instance, an IGT instance might include only the L
line, because the line has slightly different word order from the language line
in a previous instance, and readers could infer what the gloss and translation
lines should be from the previous IGT instance. Other non-canonical instances
might be due to the extraction process failing to capture all lines; for instance,
if a language line contains non-ASCII characters, the line may be jumbled up
by the off-the-shelf PDF-to-text converter and consequently is not included as
part of IGT. Table 2 gives a breakdown of the number of IGTs by the presence
of L, G, T lines. The Other types category includes cases such as lines tagged
as L-G, which means L and G are displayed side-by-side on the same line. The
table shows that only 74.92% of IGT are in the canonical form. For the rest,
additional work is required to recover the “missing” lines from the context.

Lines in # of IGT % of IGT
an IGT instances instances

L, G, and T 117,717 74.92

L and G 19,750 12.57
L and T 7,912 5.04
G and T 469 0.30

L only 749 0.48
G only 611 0.39
T only 155 0.10

Other types 9,751 6.21

Total 157,114 100

Table 2 The IGT type distribution in ODIN after stage 2 (manual correction).

Enriching a Massively Multilingual Database of Interlinear Glossed Text 7

2.3 The Initial release of the ODIN Database

The initial release of the ODIN database constructed using the steps described
in this section was made available to the public in 2010 (Lewis and Xia, 2010);3

this subset contains 130,351 instances of IGT across 1,274 languages. The
release includes the original IGT data in a plain text format, as shown in
Fig. 1, reflecting the information as extracted from the source documents and
the language that the IGT belongs to. The first line shows the document ID,
the position of the IGT in the document (in this example, in lines 959-961),
and the type of each line in the IGT. The second line gives the language
name and language code. The next three lines are the original text from the
document, annotated with the original line number and assigned tag.

doc_id =397 959 961 L G T
language: Korean (kor)
line =959 tag=L: (1) Nay -ka ai -eykey pap -ul mek -i-ess -ta
line =960 tag=G: I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec
line =961 tag=T: ‘I made the child eat rice.’

Fig. 1 An IGT example in plain text format

The work presented in the following sections of this paper expands on the
initial corpus by analyzing and enriching the text data and encoding it in a
more structured format.

3 Enriching IGT Data

The unique structure of IGT makes it an extremely rich source of information
for resource-poor languages: Implicit in an IGT instance is not only a short
bitext between that language and a language of wider communication (almost
universally English, but instances of Spanish and German have been discovered
as well), but also information encoded in the gloss line about the grammatical
morphemes in the source language and word-by-word translations to lemmas
of the translation language. Thus even small quantities of IGT could be used
to bootstrap tools for resource-poor languages through structural projection
(Yarowsky and Ngai, 2001; Xia and Lewis, 2007). However, bootstrapping tools
often require the original IGT to be enriched, as explained in this section.

3.1 Cleaning and normalizing IGT instances

The process of collecting IGT from linguistic documents may introduce noise.
For instance, ODIN uses an off-the-shelf converter to convert PDF documents
into text format and the converter sometimes wrongly splits a language line

3 http://odin.linguistlist.org

http://odin.linguistlist.org

8 Fei Xia et al.

into two lines. One such an example is Fig. 2, where the language line is
incorrectly split into two lines by the converter, as indicated by the CR (for
“corruption”) tag for lines 875 and 876.

doc_id =1482 874 878 M+AC+LN L+CR L+SY+CR G T+DB
language: Haitian (hat)
line =874 tag=M+AC+LN: (25) Haitian CF (Lefebvre 1998:165)
line =875 tag=L+CR : ak
line =876 tag=L+SY+CR: Jani pale lii/j
line =877 tag=G : (John speak with he)
line =878 tag=T+DB : (a) ’John speaks with him ’, (b) ’John

speaks with himself ’

Fig. 2 An IGT isntance with corrupted language line and embedded meta-information.

Furthermore, the raw IGT is often not in the three-line canonical form. For
instance, an IGT often contains other information (indicated by the M primary
tag for “miscellaneous”) such as a language name, a citation, and so on. In
Fig. 2, the first line contains the language name4 (indicated by the LN sec-
ondary tag) and citation (the AC tag), the third line includes the coindexation
symbols i and i/j (the SY tag stands for general syntactic markup), and the
last line shows two possible translations of the sentence (the DB tag means
“double” annotation).

The cleaning and normalization step aims at fixing errors that were intro-
duced when IGT was extracted from the linguistic documents, separating out
various fields in an IGT, normalizing each field, and storing the results in a
uniform data structure. Fig. 3 shows the ideal resulting IGT after this step.
Our current rule-based system is able to fix simple cases of line corruption
where tokens align to whitespace, but the goal is to also cleanly separate the
various kinds of meta-information. For example, in Fig. (3) the coindexation
symbols i and j are removed from the language line and stored in a separate
field, the wrongly split language lines are merged back together, and the au-
thor citation and language name metadata are split into separate fields. Some
of these goals are relatively easy to achieve (e.g., detecting and separating out
citations), but others are more difficult. For instance, determining whether i
in Jani is a co-index or part of the word is not trivial. For cases that cannot be
done automatically with the rule-based cleaner and normalizer, they can be
handled manually by human annotators using XigtEdit (the editor described
in Section 6).

3.2 Adding word alignment and syntactic structure

After we have cleaned the IGT, the next step is to add word alignment and
syntactic structure. In our previous work (Xia and Lewis, 2007), we proposed
an algorithm to leverage the structure of IGT to enrich it further. We do so

4 CF in the language name stands for French-lexified creole.

Enriching a Massively Multilingual Database of Interlinear Glossed Text 9

doc_id =1482 874 878 M+LN M+AC L M+SY G T T+AL
language: Haitian (hat)
line =874 tag=M+LN : Haitian CF
line =874 tag=M+AC : (Lefebvre 1998:165)
line =875 -876 tag=L: Jan pale ak li
line =876 tag=M+SY : i i/j
line =877 tag=G : John speak with he
line =878 tag=T : ’John speaks with him ’
line =878 tag=T+AL : ’John speaks with himself ’

Fig. 3 A recovery of the corrupted language line in Fig. 2 and ideal interpretation of
embedded meta-information.

in three steps: (1) parse the English translation with an English parser, (2)
align the language line and the English translation via the gloss line, and (3)
project syntactic structures from English onto the language line. Given the
IGT in Ex. (1), the algorithm will produce the word alignment in Fig. 4, the
dependency structures in Fig. 5, and the phrase structures in Fig. 6.

The teacher gave a book to the boy yesterday

gave-3sg the teacher book to-the boy yesterday

Rhoddod yr athro lyfr i'r bachgen ddoeLanguage:

Gloss:

Translation:

Fig. 4 Aligning the language line and the English translation with the help of the gloss line

gave

teacher

the

book to yesterday

boya

the

Rhoddodd

athro lyfr i’r ddoe

yr bachgen

Fig. 5 Projecting dependency structure from the translation line to the language line

The structures produced by syntactic projection often are not perfect be-
cause the structures in the translation line and the language line may differ
significantly. Dorr (1994) provides a detailed analysis of divergence in lan-
guages. In a previous study (Georgi et al, 2014), we investigated the use of
small, parallel, annotated corpora to automatically detect divergent structural
patterns between two languages. While this detection process was not exhaus-
tive, we demonstrated that common patterns of divergence can be identified

10 Fei Xia et al.

S

NP1 VP

VBD

gave

NP2

DT

a

NN

book

PP

IN NP3

DT

the

NN

boy

to

NP4

NN

yesterday

DT

The

NN

Teacher

S

VBD NP PPNP NP

DT

yr

(the)

NN NN NN

ddoe

(yesterday)

IN+DT

i’r

(to-the)

NN

bachgen

(boy)

lyfr

(book)

athro

(teacher)

rhoddod

(gave)

Fig. 6 Projecting phrase structure from the translation line to the language line

automatically without prior knowledge of a given language pair, and the pat-
terns can be used to improve performance of syntactic projection and parsing.
When tested on IGT instances from eight languages, applying automatically
learned patterns improved projection accuracy from 83.2% to 89.0%.

3.3 Usability of enriched IGT

As a language sample, IGT from linguistics papers is subject to what Lewis
and Xia (2008b) term ‘IGT bias’, overrepresenting structures of interest to
linguists. Furthermore, the projected structures are subject to ‘English bias’
(Ibid.), stemming from the fact that they originate as structures for English.
Errors made by the English parser and the word aligner add additional noise
to the data. So it is reasonable to ask whether the enriched IGT is too noisy
to be useful.

In our experience so far, the enriched IGT has been quite useful, across
a variety of tasks: It allows linguists to search ODIN for linguistic construc-
tions (e.g., passives, conditionals, double object structures) contained in the
IGT instances. Enriched IGT also allows discovery of computationally rele-
vant typological features, such as word or constituent order, or the presence
or absence of particular grammatical features, and does so with high accuracy
(Lewis and Xia, 2008a; Bender et al, 2013). Furthermore, enriched IGT can
also be used to bootstrap NLP tools; for instance, adding features extracted
from projected syntactic structures to a statistical parser provided a significant
boost to parsing performance (Georgi et al, 2013).

4 Representing Enriched IGT in Xigt

The enriched ODIN database contains much useful information, including the
original interlinear glossing, the translations, the added phrase structure anno-
tations, and so on, but the data is not easily accessible in the plain-text format
described in Section 2.3. The plain-text format is sufficient for representing the
original IGT for reading by humans, but our goal is to enable automatic bulk
processing of IGT, and for this we need a structured way to query the data
and relationships present in each IGT. For instance, if we have a stored parse

Enriching a Massively Multilingual Database of Interlinear Glossed Text 11

tree over the source language words and we want to know what gloss grams
annotate the words covered by a node in the parse tree, with the plain-text
format we would have to split up the strings and count tokens.5 Instead of
placing ourselves in this situation, we store the structural relationships we
have analyzed into a structured data format. For this purpose, we adopted
and extended the data model and XML format called Xigt (Goodman et al,
2014).6 In this section, we explain the basic Xigt format and the extensions
we have developed in order to encode enriched IGT in ODIN.

A basic Xigt representation of the IGT in Fig. 1 is given in Fig. 7.

<?xml version ="1.0" encoding ="utf -8"?>
<xigt -corpus alignment -method="auto" xml:lang="en">

<igt id="i1">
<tier type="phrases" id="p" xml:lang="ko">

<item id="p1">Nay -ka ai-eykey pap -ul mek -i-ess -ta</item>
</tier>
<tier type="words" id="w" segmentation="p" xml:lang="ko">

<item id="w1" segmentation="p1 [0:6]"/>
<item id="w2" segmentation="p1 [7:15]"/>
<item id="w3" segmentation="p1 [16:22]"/>
<item id="w4" segmentation="p1 [23:35]"/>

</tier>
<tier type="glosses" id="g" alignment="w">

<item id="g1" alignment="w1">I-Nom</item>
<item id="g2" alignment="w2">child -Dat</item>
<item id="g3" alignment="w3">rice -Acc</item>
<item id="g4" alignment="w4">eat -Caus -Pst -Dec</item>

</tier>
<tier type="translations" id="t" alignment="p">

<item id="t1" alignment="p1">I made the child eat rice.</item>
</tier>

</igt>
</xigt -corpus >

Fig. 7 The basic Xigt representation of the IGT in Fig. 1

The format will be explained below, but there are some differences from the
plain-text format to note here. The language line has been split into two tiers:
the phrases tier stores the entire line as a single item, and the words tier encodes
the tokenization of the line. This dyadic representation of the language line
is useful, in part, because the other tiers (glosses and translations) are not
annotations of the same thing; the glosses are annotations of the tokens, while
the translation is an annotation of the whole language line. Depending on
the desired granularity of tokenization, it is also possible to split words into
morphemes, or to not tokenize the language line at all. For these cases, the gloss
items (tokenized accordingly) would align to the morphemes or to the whole
phrase, respectively. Finally, Fig. 7 is a direct translation of the plain-text

5 Similarly, existing formats (e.g., the CoNLL format for representing dependency struc-
ture) aren’t designed to handle IGT, including the relationships between the lines.

6 Goodman et al chose to develop a new format after surveying many existing formats for
encoding IGT and finding that none of them fully supported their requirements. The details
of this process, including the desiderata they identified, are in (Goodman et al, 2014).

12 Fei Xia et al.

form into Xigt, but for the ODIN data we will encode structural relationships
as standoff annotations, as in Fig. 10. The rest of this section explains the
Xigt format and the extensions we’ve made to accommodate enriched IGT in
ODIN.

4.1 The Xigt Data Model and Format

Xigt was designed to accommodate the analysis and processing of large corpora
of IGT instances, to be readily extensible for custom tier types, and to handle
complex annotation alignments. To satisfy these criteria, Goodman et al made
the following design decisions: (1) There are only four levels of nesting of the
primary (non-metadata) elements: the corpus (<xigt-corpus>), the IGT instance
(<igt>), the tier (<tier>), and the tier datum (<item>); (2) All data for an IGT
instance goes within its own <igt> element, and, for each IGT, all data for a
vector of annotations of the same type (words, glosses, etc.) goes within its own
<tier> element;7 (3) Structural relationships (i.e., annotation alignments) are
represented with an ID-reference scheme. Decision (1) ensures that, even with
custom tier extensions, processors of Xigt corpora can reliably read the data,
even if they choose to do nothing with it. Decision (2) helps when dealing with
large corpora, because the processors can work with an IGT instance as soon
as it is read, rather than having to first read an entire corpus into memory.
Decision (3) allows us to encode annotations in the relatively flat structure,
which is more scalable than using element nesting (e.g., where a word element
contains its morpheme elements, rather than being referenced by them).

The ID-reference scheme is crucial to the interpretation of Xigt data. In
fact, Xigt makes no distinction between original data and annotations; “an-
notations” are simply data that reference other data in some way. Thus, mor-
phemes are annotations of words just as glosses are annotations of morphemes.
Goodman et al created a referencing system that goes beyond simple IDs, al-
lowing multiple IDs and sub-selections of content from the ID-bearing element.
This referencing system, called “alignment expressions”, allows for complex
alignments while being concise in form.8 By default, Xigt has two modes of
referencing among three reference attributes: the alignment attribute selects
the target of annotation; the content attribute selects the content, or label,
of annotation (e.g., when the annotation label exists elsewhere in the docu-
ment, as in stand-off annotation); and the segmentation attribute selects both

7 However, it is possible to have multiple tiers of the same type, such as a words tier for
the tokenization of the language line and another for the tokenization of the translation.
These represent two distinct vectors of annotations of the same type.

8 Alignment expressions are a deviation from common practice for making references in
XML documents. A more standard solution might have separate attributes for the referred
ID and the start and end positions of substring selections, where necessary. Considering that
there can be multiple IDs, each potentially using substring selections, in a single reference,
and that there can be more than one kind of reference for a single item, such a solution
could quickly become unwieldy and unnecessarily inflate the file size of a document. For
these reasons, Goodman et al found alignment expressions to be a more elegant solution.

Enriching a Massively Multilingual Database of Interlinear Glossed Text 13

the target and the content at the same time. The final attribute is named
“segmentation” as it is used to specify that an item is a segment of another.
Looking back at Fig. 7, the items on the words tier are segments of the phrases

tier, and therefore use substring selections in the alignment expressions. The
glosses tier annotates words one-to-one, so its items are aligned to IDs without
substring selections. The content attribute is generally used for stand-off an-
notation, described below. In some cases these three reference attributes are
insufficient, so Xigt extensions may define new reference attributes. For ex-
ample, bilingual alignments from source language words to translation words
need two annotation targets.

Lastly, Xigt supports <metadata> elements at the corpus, IGT, and tier lev-
els. Metadata can be used to specify the languages present in a corpus, track
the provenance of source documents, add comments, and so on. Xigt provides
some basic metadata types, but since metadata is meant to provide extra in-
formation and not change the interpretation of the primary data, it can be
open-ended. For example, by including the appropriate namespaces, we can
encode OLAC metadata elements,9 as is done in Fig. 10 below.

4.2 Extensions and Methods for Representing the Original ODIN Data

The features of Xigt provide a useful base for the ODIN corpus. In this section,
we describe the extensions we defined on top of the base provided by Xigt to
aid in accurately representing the original ODIN data. There are extensions
for minor things like element attributes and also for major things like new tier
types. We also briefly outline methods for extracting and encoding structural
information about IGT tiers.

Provenance and metadata: Each IGT instance in ODIN contains metadata
to identify the original PDF it came from, the source language it covers, and
the tag types (covered in Section 2.2) of each line. In order to capture this
information, we add doc-id, line-range, and tag-types as possible attributes on
<igt> elements. The doc-id attribute value can be looked up in an external
citation list to find the document title and author, but we can also encode this
information directly into the corpus as an OLAC metadata element. Language
information is encoded in the xml:lang attribute,10 but to aid in IGT discover-
ability we also encode the source language and annotation language in OLAC
metadata items.

Stand-off annotation: Because we are automatically inferring the structural
annotations from the plain-text formatted IGT, there is always the possibility

9 http://www.language-archives.org/OLAC/metadata.html
10 The xml:lang attribute is a standard part of the XML specification: http://www.w3.
org/TR/xml/#sec-lang-tag. Its semantics state that it is inherited by descendant elements,
so the default language may be specified at the corpus level and tier-specific languages may
then override the default.

http://www.language-archives.org/OLAC/metadata.html
http://www.w3.org/TR/xml/#sec-lang-tag
http://www.w3.org/TR/xml/#sec-lang-tag

14 Fei Xia et al.

that the structure we infer is incorrect. We do not want our encoding pro-
cess to discard potentially useful information, and therefore choose to keep
the original ODIN plain-text lines, as extracted from the source PDF docu-
ments, in a tier and encode the structural relationships over them as stand-off
annotation. This tier type, called odin, is the first major Xigt extension for
the ODIN data. The items on this tier contain a line of plain text and each
item is given an ID for later reference. We encode the data in Unicode by
default, so nearly any Unicode character is acceptable.11 The tier is given an
attribute state="raw" to show that the contained text hasn’t yet gone through
any cleaning or normalization steps.

Storing cleaned and normalized IGT: Because IGT instances are extracted
automatically from Web documents and linguists do not follow a consistent
protocol for creating IGT,12 the original IGT instances can be noisy. Following
the cleaning steps discussed in Section 3.1, we will apply any necessary trans-
formations to the raw text so the structural annotations have a good base to
build on. The transformations themselves become new odin tiers, aligned to
the tier they came from. Each new odin tier will set the value of the state

attribute to describe the kind of transformation done, such as “cleaned” or
“normalized”.

Automatic segmentation and alignments: So far we have described how we
transform and encode the ODIN plain-text IGT into Xigt. Here we explain
how structural annotations are created on top of them. The first step is to
establish structural tiers that correspond to tagged lines from the ODIN data.
If there is a line tagged “L”, we create a phrases tier with an item selecting the
line’s content (with the content reference attribute). Similarly, a line tagged
with “G” is selected by a glosses tier item, and a line tagged with “T” is
selected by a translations tier item. Each of these latter two are also aligned
(with the alignment reference attribute) to the item on the phrases tier to show
the annotation structure. At this point, all structural annotations (phrases,
glosses, and translations) have a single item representing the whole ODIN
plain-text line, as the fragment in Fig. 8 shows.

If the phrases tier and glosses tier can be word-segmented (e.g., by white-
space) yielding the same number of tokens on each, we refine the annotations
by creating a words tier from the phrases tier (using the segmentation reference
attribute to select each word), split the single gloss item so there is one for
each segment, then realign the glosses one-to-one to the words. The fragment
in Fig. 9 shows the results of this step.

Now, if each word and its corresponding gloss can be segmented into mor-
phemes (e.g., by common delimiters such as hyphens) yielding the same num-

11 Unacceptable characters are those illegal in XML documents, such as the form feed char-
acter (0x000C) and other Unicode control characters. If the original IGT data contain any
unacceptable characters, we replace them with the Unicode replacement character (0xFFFD).
12 The problem persists despite efforts to promote consistency, such as the Leipzig Glossing

Rules (Bickel et al, 2004).

Enriching a Massively Multilingual Database of Interlinear Glossed Text 15

<tier type="phrases" id="p" content="n" xml:lang="ko">
<item id="p1" content="n1"/>

</tier>
<tier type="glosses" id="g" content="n">

<item id="g1" alignment="p1" content="n2"/>
</tier>
<tier type="translations" id="t" content="n">

<item id="t1" alignment="p1" content="n3"/>
</tier>

Fig. 8 Automatically creating structural annotations from the ODIN plain-text lines with
the initial full-line alignments.

<tier type="phrases" id="p" content="n" xml:lang="ko">
<item id="p1" content="n1"/>

</tier>
<tier type="words" id="w" segmentation="p" xml:lang="ko">

<item id="w1" segmentation="p1[0:6]"/>
<item id="w2" segmentation="p1 [7:15]"/>
<item id="w3" segmentation="p1 [16:22]"/>
<item id="w4" segmentation="p1 [23:35]"/>

</tier>
<tier type="glosses" id="g" alignment="w" content="n">

<item id="g1" alignment="w1" content="n2[0:5]"/>
<item id="g2" alignment="w2" content="n2 [6:15]"/>
<item id="g3" alignment="w3" content="n2 [16:24]"/>
<item id="g4" alignment="w4" content="n2 [25:41]"/>

</tier>
<tier type="translations" id="t" content="n">

<item id="t1" alignment="p1" content="n3"/>
</tier>

Fig. 9 Automatic segmentation and realignment of words and glosses.

ber of tokens, we create a morphemes tier from the words tier, further split the
glosses, and realign. This iterative refinement process allows us to get struc-
tural annotations that are as precise as possible given only automatic process-
ing of the data, while still giving us useful structure in the case of noisy or
simple data. It is important to note that incorrect alignments can still be as-
cribed even when the segmented token counts are the same, but we will assume
this kind of error is rare and ignore it during the construction of the corpus.
Future work may target and correct this kind of error and others caused by
PDF extraction errors.

Fig. 10 showcases how our Korean example from Fig. 1 is encoded into
Xigt with the ODIN extensions for metadata and stand-off annotation and
with automatic segmentation to the morpheme level.

Partial representations: Finally, note that the Xigt encoding of IGT allows for
partial representations; that is, because of noise in the original IGT, we cannot
always produce all levels of enrichment. A minimal Xigt ODIN entry will have
the odin tiers encoding the information as extracted directly from the PDF, a
citation for the original source, and a language ID. If additional information
can be added to the IGT, such as the segmentation and alignment steps above,
or with the additional tiers described below, this information can be added on

16 Fei Xia et al.

<?xml version ="1.0" encoding ="utf -8"?>
<xigt -corpus alignment -method="auto" xml:lang="en">

<metadata xmlns:olac="http ://www.language -archives.org/OLAC /1.1/"
xmlns:dc="http :// purl.org/dc/elements /1.1/"
xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http ://www.language -archives.org/OLAC /1.1/

http ://www.language -archives.org/OLAC /1.1/ olac.xsd">
<meta id="md1.1">

<dc:subject xsi:type="olac:language" olac:code="ko"/>
<dc:language xsi:type="olac:language" olac:code="en"/>

</meta>
<meta id="md1.2">

<dc:source >
Bratt , Elizabeth Owen. ARGUMENT COMPOSITION AND THE LEXICON:
LEXICAL AND PERIPHRASTIC CAUSATIVES IN KOREAN. 1996

</dc:source >
</meta>

</metadata >
<igt id="i1" doc -id="397" line -range="959 961" tag -types="L G T">

<tier type="odin" state="raw" id="r">
<item id="r1" line="959" tag="L"

>(1) Nay -ka ai-eykey pap -ul mek -i-ess -ta</item>
<item id="r2" line="960" tag="G"

> I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec</item>
<item id="r3" line="961" tag="T"

> ‘I made the child eat rice.’</item>
</tier>
<tier type="odin" state="normalized" id="n" alignment="r">

<item id="n1" alignment="r1" line="959" tag="L"
>Nay -ka ai -eykey pap -ul mek -i-ess -ta</item>

<item id="n2" alignment="r2" line="960" tag="G"
>I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec</item>

<item id="n3" alignment="r3" line="961" tag="T"
>I made the child eat rice.</item>

</tier>
<tier type="phrases" id="p" content="n" xml:lang="ko">

<item id="p1" content="n1"/>
</tier>
<tier type="words" id="w" segmentation="p" xml:lang="ko">

<item id="w1" segmentation="p1 [0:6]"/>
<item id="w2" segmentation="p1 [7:15]"/>
<item id="w3" segmentation="p1 [16:22]"/>
<item id="w4" segmentation="p1 [23:35]"/>

</tier>
<tier type="morphemes" id="m" segmentation="w" xml:lang="ko">

<item id="m1.1" segmentation="w1[0:3]"/>
<item id="m1.2" segmentation="w1[4:6]"/>
<item id="m2.1" segmentation="w2[0:2]"/>
<item id="m2.2" segmentation="w2[3:8]"/>
<item id="m3.1" segmentation="w3[0:3]"/>
<item id="m3.2" segmentation="w3[4:6]"/>
<item id="m4.1" segmentation="w4[0:3]"/>
<item id="m4.2" segmentation="w4[4:5]"/>
<item id="m4.3" segmentation="w4[6:9]"/>
<item id="m4.4" segmentation="w4 [10:12]"/>

</tier>
<tier type="glosses" id="g" alignment="m" content="n">

<item id="g1.1" alignment="m1.1" content="n2[0:1]"/>
<item id="g1.2" alignment="m1.2" content="n2[2:5]"/>
<item id="g2.1" alignment="m2.1" content="n2 [6:11]"/>
<item id="g2.2" alignment="m2.2" content="n2 [12:15]"/>
<item id="g3.1" alignment="m3.1" content="n2 [16:20]"/>
<item id="g3.2" alignment="m3.2" content="n2 [21:24]"/>
<item id="g4.1" alignment="m4.1" content="n2 [25:28]"/>
<item id="g4.2" alignment="m4.2" content="n2 [29:33]"/>
<item id="g4.3" alignment="m4.3" content="n2 [34:37]"/>
<item id="g4.4" alignment="m4.4" content="n2 [38:41]"/>

</tier>
<tier type="translations" id="t" alignment="p" content="n">

<item id="t1" alignment="p1" content="n3"/>
</tier>

</igt>
</xigt -corpus >

Fig. 10 The Xigt representation of the IGT in Fig. 1 with basic ODIN extensions for
metadata attributes and stand-off annotation. Compared to Fig. 9, the words and glosses
are further automatically segmented and realigned at the morpheme level.

Enriching a Massively Multilingual Database of Interlinear Glossed Text 17

top of—without altering—the existing data. The ability to add information
by referencing and not changing or restructuring the underlying data allows
users of the ODIN data to add their own tiers of annotations and make them
available to the public. Thus we see another benefit of encoding ODIN data
in Xigt: Xigt allows easy encoding of information in enriched IGT and helps
facilitate the exchange of IGT data with various levels of annotation.

4.3 Extensions for Enriched ODIN Data

Beyond encoding the original ODIN IGT into Xigt, we also want to encode
information from enriched IGT. For these, we define additional tier types, as
described below.

Syntactic structures: An important source of information in IGT is the im-
plicit structure of the string in the translation line—this is equally true for
human readers of IGT and for automatic processors of IGT. Humans use their
knowledge as speakers of resource-rich language (the language translated into)
to gain an understanding of the language line, whereas automatic processors
take advantage of the greater resources available for English (the most com-
mon language for IGT translation lines) to do the same. We defined a Xigt
extension to allow for the encoding of syntactic structures (both dependency
structures and parse trees). Our method of encoding these structures in XML
is similar to some other formats, such as the TIGER-XML treebanking for-
mat (Brants et al, 2002) for parse trees, or Malt-XML (Nivre et al, 2006) for
syntactic dependencies, although there are differences to ensure conformance
with the Xigt data model.

For parse trees, we create a new tier type phrase-structure, and we treat each
<item> element as a node in the tree. The alignment reference attribute aligns
leaf nodes with the words (e.g., words from the translation line) they label.
We define a second reference attribute, children, so non-terminal nodes can
select their child nodes (terminal or non-terminal). The value of the children

reference attribute is not an alignment expression, but a reference list, so it
can take a space-separated list13 of one or more IDs. The content of each item
(whether explicitly given or selected via the content attribute) is the node
label. Fig. 11 shows how the phrase-structure tier, supported by a words tier
segmenting the translation line,14 would be encoded to annotate the example
in Fig. 10.

13 Following the specification of the IDREFS attribute type: http://www.w3.org/TR/

REC-xml/#idref. We choose not to use, e.g., a comma-separated alignment expression be-
cause the children of a node are more intuitively a list rather than a string concatenation.
Also, we want to disallow sub-selections on children.
14 It is not strictly necessary to first segment the translation line; the items on the
phrase-structure tier could use alignment expressions to select the word spans directly
from the item on the translations tier. However, we find it prudent to segment the words
separately in case more than one tier annotates the same segments.

http://www.w3.org/TR/REC-xml/#idref
http://www.w3.org/TR/REC-xml/#idref

18 Fei Xia et al.

<tier type="words" id="tw" segmentation="t">
<item id="tw1" segmentation="t1[0:1]"/>
<item id="tw2" segmentation="t1[2:6]"/>
<item id="tw3" segmentation="t1 [7:10]"/>
<item id="tw4" segmentation="t1 [11:16]"/>
<item id="tw5" segmentation="t1 [17:20]"/>
<item id="tw6" segmentation="t1 [21:25]"/>
<item id="tw7" segmentation="t1 [25:26]"/>

</tier>
<tier type="phrase -structure" id="ps" alignment="tw" children="ps">

<item id="ps1" alignment="tw1">PRP</item>
<item id="ps2" alignment="tw2">VBD</item>
<item id="ps3" alignment="tw3">DT</item>
<item id="ps4" alignment="tw4">NN</item>
<item id="ps5" alignment="tw5">VBP</item>
<item id="ps6" alignment="tw6">NN</item>
<item id="ps7" alignment="tw7">.</item>
<item id="ps8" children="ps1">NP</item>
<item id="ps9" children="ps3 ps4">NP</item>
<item id="ps10" children="ps6">NP</item>
<item id="ps11" children="ps5 ps10">VP</item>
<item id="ps12" children="ps9 ps11">S</item>
<item id="ps13" children="ps12">SBAR</item>
<item id="ps14" children="ps2 ps13">VP</item>
<item id="ps15" children="ps8 ps14 ps7">S</item>

</tier>

Fig. 11 XML fragment showing the phrase-structure tier annotating translation words
from the example in Fig. 10.

Syntactic dependency structures are represented with a dependencies tier.
As the nodes of a dependency graph are the words themselves, there is little to
be gained by specifying dependency nodes in the tier. Instead, items in the tier
represent the dependency relations between two words. The dependent word
is selected by the reference attribute dep, while the head is selected with the
reference attribute head. An item with a dependent and no head is interpreted
as the root. For labeled dependencies, the item contents (whether explicitly
given or selected via the content attribute) encode the label. Fig. 12 shows the
encoding of the dependencies tier over the translation words given in Fig. 11.

<tier type="dependencies" id="dt" dep="tw" head="tw">
<item id="dt1" dep="tw1" head="tw2">nsubj</item>
<item id="dt2" dep="tw2">root</item>
<item id="dt3" dep="tw3" head="tw4">det</item>
<item id="dt4" dep="tw4" head="tw2">nsubj</item>
<item id="dt5" dep="tw5" head="tw2">ccomp</item>
<item id="dt6" dep="tw6" head="tw5">dobj</item>

</tier>

Fig. 12 XML fragment showing the dependencies tier annotating translation words (listed
in Fig. 11) from the example in Fig. 10.

In this example, both the parse tree if Fig. 11 and the syntactic depen-
dencies in Fig. 12 were obtained by the Stanford Parser (Klein and Manning,

Enriching a Massively Multilingual Database of Interlinear Glossed Text 19

2003; de Marneffe et al, 2006), but the users can choose their preferred parser
to generate alternative analyses and add them to the Xigt representation.

Parts of Speech: A tier to label the parts of speech of the language line is
relatively common in IGT, but it is not included in the standard tier set of
Xigt. For ODIN, we also want to label the parts of speech of the translation
words. For these cases, we add a pos tier. This tier does not require any special
attributes. It may be useful to restrict the allowable parts of speech, but we
do not place any restrictions for this version of ODIN. Fig. 13 shows the pos

tier annotating the translation words.

<tier type="pos" id="tw-pos" alignment="tw">
<item id="tw-pos1" alignment="tw1">PRP</item>
<item id="tw-pos2" alignment="tw2">VBD</item>
<item id="tw-pos3" alignment="tw3">DT</item>
<item id="tw-pos4" alignment="tw4">NN</item>
<item id="tw-pos5" alignment="tw5">VBP</item>
<item id="tw-pos6" alignment="tw6">NN</item>
<item id="tw-pos7" alignment="tw7">.</item>

</tier>

Fig. 13 XML fragment showing the pos tier annotating parts of speech over the translation
words (listed in Fig. 11) from the example in Fig. 10.

Note here that the parts of speech are the same as the terminal node labels
of the phrase-structure tier shown earlier. If this is guaranteed to be the case
(e.g., if the parts of speech were taken directly from the parse tree instead of
being produced by a separate process), it’s possible to select them from the
phrase-structure tier via the content reference attribute instead of spelling them
out again. Similarly it is possible to spell out the parts of speech in the pos

tier and have the phrase-structure tier select them for its terminal node labels
(the non-terminal node labels would still need to be explicitly given). Fig. 14
is a fragment of what the pos tier would look like if its content were selected
from a phrase-structure tier.

<tier type="pos" id="tw-pos" alignment="tw" content="ps">
<item id="tw-pos1" alignment="tw1" content="ps1"/>
...

</tier>

Fig. 14 XML fragment showing the pos tier with labels selected from a phrase-structure

tier.

This kind of cross-reference would yield data that is more linked than oth-
erwise, so that updates to the labels on the parse tree would also update the
parts of speech, but it also increases dependencies among the tiers. For in-
stance, if the phrase-structure tier were removed, the content of each item on
the pos tier would need to be reified (i.e., the resolution of the content reference

20 Fei Xia et al.

attribute would be set as the value directly) or else the content reference at-
tributes would become invalid. For the ODIN data, the part of speech content
links to the items on the phrase-structure tier.

Bilingual Word Alignments In order to project the syntactic structure from
the translation line to the language line, as is done in ODIN, we need word
alignments from one side to the other, as might be produced by a statistical
word aligner. In ODIN we actually align the translation words to the gloss to-
kens (as the gloss tokens should align one-to-one with the language line words),
but the effect is the same. To represent this in Xigt, we need a tier that aligns to
two other tiers, therefore we define a bilingual-alignments tier with both source

and target reference attributes.15 Note that, unlike the phrase-structure tier
above (see Fig. 11), bilingual alignments may have a need for sub-selections
when only part of a word aligns, so we use alignment expressions instead of a
simple reference list. Fig. 15 shows how we encode these alignments between
the translation words and the glosses.

<tier type="bilingual -alignments" id="a" source="tw" target="g">
<item id="a1" source="tw1" target="g1.1"/>
<item id="a2" source="tw2" target="g4.2,g4.3"/>
<item id="a3" source="tw3" />
<item id="a4" source="tw4" target="g2.1"/>
<item id="a5" source="tw5" target="g4.1"/>
<item id="a6" source="tw6" target="g3.1"/>

</tier>

Fig. 15 XML fragment showing the bilingual-alignments tier aligning translation words
(listed in Fig. 11) to glosses for the IGT in Fig. 10.

4.4 Dependencies between tiers

So far, we have described the tiers used to represent enriched IGT data. The
tiers can be divided into three groups according to the source of information
in the tiers:

– Group 1 includes only one tier type, odin, and it stores the original IGT
text and the text after cleaning and normalization.

– Group 2 (including phrases, words, morphemes, glosses, translations tiers) en-
codes the annotations that are implicit in the textual IGT. For instance,
segmenting words in the words tier by hyphens will yield the morphemes tier,
and the ith token in the morphemes tier should—in a clean, conventional
IGT—align to the ith token in a similarly segmented glosses tier.

15 We could have repurposed the alignment reference attribute for one of these, perhaps
source, but we felt that defining two new reference attributes made their purpose clearer.

Enriching a Massively Multilingual Database of Interlinear Glossed Text 21

– Group 3 encodes information that is not present in the original IGT, but is
obtained through manual annotation with tools such as XigtEdit, or by run-
ning the IGT through some NLP systems such as INTENT. This group cur-
rently includes bilingual-alignments, pos, phrase-structure, and dependencies,
and it can be extended further if new tier types are needed to present new
types of information.

In Fig. 16, the three big boxes correspond to the three groups. The arcs
between the tiers show the dependency relations between those tiers, and they
correspond to the reference attributes (e.g., content and alignment). A tier can
depend on more than one tier; for instance, the bilingual-alignments tier de-
pends on both glosses and words. In addition to the arcs displayed in the figure,
there could be other dependencies between Group 3 tiers based on how they are
created. For instance, if the dependencies tier is created by syntactic projection,
the tier will also depend on the bilingual-alignments tier. These dependency
relations define a partial order between tiers so that a tier can only refer to
itself or tiers that precede it in the dependency chain. This partial ordering
is crucial when XigtEdit determines how editing in one tier affects other tiers
(see Section 6.2).

4.5 Processing documents with the Xigt API

To make it easier for the researchers to access IGT data in the Xigt format, we
provide an application-program interface (API), with a reference implemen-
tation in Python, for interacting with Xigt-encoded corpora computationally.
The API provides the following functionalities:

– Serialize/deserialize Xigt documents to in-memory data structures
– Iterate over data collections (corpora, IGT, tiers)
– Retrieve object attributes, metadata, and content
– Retrieve the parent (i.e., container) of some object, such as a tier from an

item
– Resolve the content, or the targeted items/tiers, of alignment expressions
– Construct new in-memory data structures

These functions allow users to easily build more complicated functions
for their data, such as for counting statistics (e.g., finding the most frequent
word), forming complex queries over data (e.g., “what are all the morphemes
appearing on words marked as verbs?”), or augmenting a corpus with new
analyses (e.g., creating a word-sense tier by looking up each word and its
context in an external ontology and aligning the result to the word it came
from). The API also enables users to construct new corpora in-memory (e.g.,
by converting or analyzing some other data) which can then be serialized to
disk. The Python implementation of the Xigt API is available as part of the
Xigt project: http://depts.washington.edu/uwcl/xigt.

http://depts.washington.edu/uwcl/xigt

22 Fei Xia et al.

Segmentation Tiers

Gloss

glosses

(word-level)

glosses

(morpheme-level)

Language

phrases

words

morphemes

Translation

translations

words

Text Tiers

odin (normalized)

odin (cleaned)

odin (raw)

Annotation Tiers

Gloss

pos

Language

pos

phrase-structure

dependencies

Translation

pos

phrase-structure

dependencies

bilingual-alignment

Fig. 16 Dependencies between tiers in enriched IGT

Enriching a Massively Multilingual Database of Interlinear Glossed Text 23

4.6 Summary: Encoding ODIN in Xigt

Here we have described the Xigt data model and XML format and two sets
of extensions for encoding the ODIN data: the first set helps us accurately
encode the existing data, while the second allows us to encode new information
obtained by analyzing the existing data. The minimal IGT will contain an
odin tier with the text extracted from the PDF files. Where it is possible to
infer the structure of the existing data, additional tiers will provide stand-off
annotations with the structure. As we analyze and process the existing data,
the results will be added as further annotation referencing the existing tiers.

5 INTENT : a package for creating enriched IGTs

In the previous sections, we described what type of information is in enriched
IGTs and how it is represented in Xigt. Because manually creating enriched
IGTs is time consuming and error-prone, we have developed a package, the
INterlinear Text ENrichment Toolkit (INTENT), which takes an original IGT
file as the input, and produces the enriched IGT in the Xigt format as the out-
put. This output can then be corrected by a human annotator using XigtEdit,
or be used to train a POS tagger or a parser.

5.1 Toolkit components

Fig. 17 shows a typical enrichment workflow in INTENT. The input to IN-
TENT is a file with the original IGT in either plain text format or in Xigt.
INTENT first cleans and normalizes the IGT by some simple heuristic rules. It
then generates the second group of tiers including words, morphemes (if the mor-
pheme boundary is present in the IGT), glosses, and the like. After that, the
third group of tiers are created by running the word alignment, part-of-speech
tagging, and syntactic parsing modules described below.

Word Alignment: In previous work (Xia and Lewis, 2007), we proposed two
methods for aligning the gloss line and the translation line. The first method
ran a morphological analyzer on the translation line, and then aligned the
words in the two lines if they had the same stems. The second method used
GIZA++ (Och and Ney, 2003), a statistical word aligner. Experimental results
showed that the performances of the two methods were similar and combining
them yielded a small boost. INTENT has re-implemented those methods, and
we plan to enhance the heuristic method by taking advantage of the POS tags
in the enriched IGT.

Part-of-Speech Tagging: INTENT tags the translation line by running
Stanford’s English POS tagger (Toutanova et al, 2003)16 trained on the En-
glish Penn Treebank (Marcus et al, 1993). As for the language line, while one

16 http://nlp.stanford.edu/software/tagger.shtml

http://nlp.stanford.edu/software/tagger.shtml

24 Fei Xia et al.

XIGT
Document

Cleaning &
Normalization

Word
Alignment

Part-of-Speech
Tagging

Syntactic
Parsing

Enriched
XIGT Document

Fig. 17 A typical enrichment workflow in INTENT

can simply project the POS tags from the translation line, the quality of the
resulting tags is often low due to word alignment errors and translation diver-
gence (Dorr, 1994). Instead, INTENT takes advantage of the annotation on
the gloss line; for instance, grammatical markers such as -Nom (nominative
case marker) and -Dec (declarative marker) are good cues for predicting the
POS tags of the corresponding words in the language line. We can also find
the POS tags of most morphemes in the gloss line using an English dictionary
even if those morphemes are not aligned to the words in the translation line.
We built a classifier using those features and trained it with a small amount of
labeled gloss line data from multiple languages.17 INTENT runs that classifier
on new IGT data. Although the new IGT in the test data may be in a language
that does not appear in the training data for the classifier, the meanings of
grammatical markers and the POS tags of the glosses are largely language-
independent. Experimental results show that this classifier outperforms the
method that projects the POS tags directly (Georgi et al, 2015).

Syntactic Parsing: The syntactic structure (phrase structure or dependency
tree) for the translation line is produced by running the Stanford Parser
(de Marneffe et al, 2006).18 INTENT then projects the syntactic structure to
the language line following the heuristic algorithm in (Xia and Lewis, 2007).

17 We use a classifier, not a sequence labeler, because the word order in the gloss line will
be language-dependent, and the training and test data of our POS tagger can come from
different languages.
18 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

Enriching a Massively Multilingual Database of Interlinear Glossed Text 25

While the workflow in Fig. 17 shows a pipeline approach, we are expanding
the package to allow feedback loops among the modules. For instance, INTENT
runs the word aligner first to get the initial alignment, which will be used to
project high-precision POS tags. The output of that POS tagger can then be
fed back to the word aligner to improve word alignment; for instance, two
words unaligned during the first pass of word alignment are more likely to be
linked together in the second pass if they have the same POS tags after POS
tagging. The improved word alignment can in turn improve the next round of
POS tagging.

5.2 Implementation of INTENT

INTENT is written in Python 3 and uses the Xigt API to interface with
the serialized documents. INTENT also supplements the Xigt API’s internal
representations with a number of convenience subclasses for performing tasks
such as tokenization and word alignment. Each type of enrichment can be run
individually or in sequence. We are in the final stage of packaging INTENT,
and the enrichment provided by the methods above is included in the IGT
instances that are part of the version 2.1 release of the ODIN data.

Because INTENT requires configuration and installation of several other
packages (e.g., the Stanford English parser), we have created a web server
which allows users to upload their whole IGT data, get it enriched, download
the results in the Xigt format, and share the data with others (if they desire),
all without the need of downloading the packages to their local machines.

6 XigtEdit : a GUI editor for enriched IGT

As Xigt is an XML-based format, it is nominally human-readable and thus ed-
itable with any text editor which is compatible with the desired or appropriate
text encodings. However, using existing text editors to edit enriched IGT in
the Xigt format is not convenient due to the special properties of Xigt:

– Xigt standoff annotation requires each tier and each tier item to have
a unique ID, which is used for cross-reference within an IGT instance.
Assigning unique IDs manually is tedious and error-prone.

– Some alignment expressions (e.g., segmentation and alignment fields in many
tiers) require precise computation of string offsets, which are tedious to
manually derive.

– Phrase-structure and dependency-structure views are inherently graphical
views that do not lend themselves to convenient text-based editing.

– Because tiers can refer to one another, editing one tier could affect the
validity of annotation in its cross-referenced tiers. Manually keeping track
of the ripple effect of such editing is challenging.

26 Fei Xia et al.

In order to address these issues, and because we desire to enable manual cor-
rection of enriched IGT, we developed a graphical Xigt editor, XigtEdit, which
facilitates the creation, editing and manipulation of Xigt files.

6.1 Main functionality of XigtEdit

Fig. 18 Main editing interface screen from the XigtEdit application

The fundamental user interface of XigtEdit is a hierarchical structure which
closely follows the Xigt abstract data model. Fig. 18 shows a screen capture
of the XigtEdit application. There are three resizable panels:

– The leftmost panel is a list of the Xigt files that have been loaded. If there
is more than one file, exactly one file is currently selected.

– The next panel, in the second column, lists the IGT instances which are in
the selected file. Again, if the file contains multiple IGT instances, exactly
one instance is currently selected.

– The rightmost panel is the editing area for the currently selected IGT
instance. Tiers are arranged vertically in this area. For some tiers, items in
the tiers are arranged vertically (line-oriented data such as in the odin tier)
while others have items displayed horizontally (word-oriented data such as
in the words, morphemes, and glosses tiers).

Enriching a Massively Multilingual Database of Interlinear Glossed Text 27

At any time during editing, individual Xigt files can be opened, edited,
saved, closed (added or removed from the files list), or reverted. Files are read
and saved directly in the Xigt format. To enhance annotator productivity,
XigtEdit assigns unique IDs to new tiers and tier items based on predefined
naming conventions.

To address the inconvenience of computing and maintaining Xigt align-
ment expressions (e.g., the segmentation field in the words tier), XigtEdit allows
the text spans for dependent items to be defined automatically. This can be
achieved either through automatic tools for segmenting text based on whites-
pace or other criteria, or manually via intuitive user interfaces for manipulating
text ranges. Furthermore, XigtEdit displays dependency or phrase structure
tiers as graphical trees which the user can edit with mouse clicks. To support
efficient annotation, XigtEdit provides keyboard alternatives to the use of the
mouse for most application navigation and editing operations.

6.2 Editing parent tiers

As mentioned in Section 4.4, tiers can refer to other tiers and we define a
partial order among tiers such that any tier can only refer to preceding tiers
or itself. If a tier C refers to another tier P, we call P a parent of C. A tier
can have multiple parents (e.g., a bilingual-alignments tier refers to a words tier
and a glosses tier). Thus, this parent relation among tiers can be represented
as a directed acyclic graph, where each node represents a tier, and each arc
goes from the parent tier to its child tier, as illustrated in Fig. 16.

XigtEdit supports the propagation of editing changes from parent to child
tiers in an IGT. Consider how editing tier P would affect another tier C that
refers to it. The behavior depends on the relation between P and C, and
whether other tiers refer to the text region in P that was edited. XigtEdit
keeps track of these relationships and analyzes whether the change would
invalidate other tiers. In cases where XigtEdit determines that a change has
a deterministic effect on its dependent tiers (and where the edit-propagation
feature has been enabled in the software), the change can be propagated from
the parent tier to its child tiers automatically. Alternatively, if the change has
ambiguous effects on other tiers, XigtEdit will prompt the user to choose what
action should be taken for dependent tiers.

Currently, XigtEdit is implemented as a Windows application within the
WPF graphical environment19. We are also in the process of porting the in-
terface to be web-browser based, for cross-platform compatibility. All imple-
mentations of XigtEdit are open source and licensed under the MIT license.

19 Windows Presentation Foundation (WPF) is a graphical framework for Microsoft Win-
dows. See http://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx

28 Fei Xia et al.

7 Conclusion

The majority of the world’s languages lack large-scale annotated resources over
which NLP tools such as POS taggers or parsers can be trained. In recent years,
there have been increasing efforts in bootstrapping NLP systems for resource-
poor languages. In the past decade, we have built ODIN, a collection of IGT
data extracted from the linguistic documents posted to the Web, and used the
IGT data to project annotations from resource-rich languages to resource-poor
ones in order to bootstrap NLP tools for the resource-poor languages.

The ODIN resource has already proved valuable in a number of research
projects (Bender et al, 2013; Georgi et al, 2013, 2015). Our goal in the present
work is to make it more accessible to the community on several levels. First,
we released the original ODIN data both in bulk and on a per-language basis.
Second, we adopted and extended Xigt, an XML representation for enriched
IGT, and provided an API for it. Users now have the option of accessing the
ODIN data in plain text format or in the Xigt-encoded version. IGT encoded in
the Xigt format can be easily extended to add more tiers or alternative anno-
tations. Xigt thus serves as a vehicle for users of ODIN to improve annotations
on the ODIN data, which in turn can provide for iterative improvements to the
resource. The successive versions of ODIN can therefore have broader utility
across the community.

Third, and most importantly, much previous work on ODIN has built
on the enrichment steps described in Section 3, but the enriched data have
not previously been available for use by the broader research community. We
have developed a package, INTENT, which enriches raw IGT automatically
by adding word alignment, POS tags, and syntactic structures to IGT. We
also built XigtEdit, a graphical editor for annotating IGT, which overcomes
limitations of existing, general-purpose text editors. Making those data and
tools freely available to the public allows NLP researchers to have easy access
to the enriched IGT data without having to re-implement the cleaning, nor-
malization, and enriching steps. They can then focus on exploring new meth-
ods for bootstrapping NLP tools for thousands of resource-poor languages
by taking advantage of rich annotation in IGT. The ODIN data, along with
the enrichments and packages described in this paper, are made available at
http://depts.washington.edu/uwcl/packages/.

In future work, we plan to use XigtEdit to manually correct the output
of INTENT for a dozen resource-poor languages, and this data set can serve
as training and test data for NLP tools for those languages. The data sets
will be released to the public, along with INTENT, XigtEdit, and other IGT
processing toolkits.

References

Bailyn JF (2001) Inversion, Dislocation and Optionality in Russian. In: Zy-
batow G (ed) Current Issues in Formal Slavic Linguistics, Frankfurt: Peter

http://depts.washington.edu/uwcl/packages/

Enriching a Massively Multilingual Database of Interlinear Glossed Text 29

Lang AG
Bender EM, Goodman MW, Crowgey J, Xia F (2013) Towards creating preci-

sion grammars from interlinear glossed text: Inferring large-scale typological
properties. In: Proceedings of the 7th Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Humanities, Sofia, Bulgaria, pp
74–83

Bickel B, Comrie B, Haspelmath M (2004) The Leipzig Glossing Rules: Con-
ventions for interlinear morpheme-by-morpheme glosses (revised version).
Tech. rep., Department of Linguistics of the Max Planck Institute for Evo-
lutionary Anthropology and the Department of Linguistics of the Univer-
sity of Leipzig, http://www.eva.mpg.de/lingua/files/morpheme.html (2006-
May-17)

Brants S, Dipper S, Hansen S, Lezius W, Smith G (2002) The TIGER tree-
bank. In: Proceedings of the Workshop on Treebanks and Linguistic Theo-
ries, pp 24–41

Bybee JL, Dahl Ö (1989) The creation of tense and aspect systems in the
languages of the world. John Benjamins

Das D, Petrov S (2011) Unsupervised part-of-speech tagging with bilingual
graph-based projections. In: HLT ’11: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies, Association for Computational Linguistics

Dorr BJ (1994) Machine translation divergences: a formal description and
proposed solution. Computational Linguistics 20(4):597–635

Farrar S, Langendoen DT (2003) A linguistic ontology for the Semantic Web.
GLOT International 7(3):97–100

Feldman A, Hana J, Brew C (2006) A cross-language approach to rapid cre-
ation of new morpho-syntactically annotated resources. In: Proc. of the
5th international conference on Language Resources and Evaluation (LREC
2006), Genoa, Italy

Georgi R, Xia F, Lewis WD (2013) Enhanced and portable dependency pro-
jection algorithms using interlinear glossed text. In: Proceedings of ACL
2013 (Volume 2: Short Papers), Sofia, Bulgaria, pp 306–311

Georgi R, Xia F, Lewis WD (2014) Capturing divergence in dependency
trees to improve syntactic projection. Language Resources and Evaluation
48(4):709–739

Georgi R, Xia F, Lewis WD (2015) Enriching interlinear text using automati-
cally constructed annotators. In: Proceedings of the 9th Workshop on Lan-
guage Technology for Cultural Heritage, Social Sciences, and Humanities
(LaTeCH 2015), Beijing, China

Goodman MW, Crowgey J, Xia F, Bender EM (2014) Xigt: extensible in-
terlinear glossed text for natural language processing. Language Resources
and Evaluation pp 1–31, DOI 10.1007/s10579-014-9276-1, URL http://dx.

doi.org/10.1007/s10579-014-9276-1

Hana J, Feldman A, Amaral L, Brew C (2006) Tagging Portuguese with
a Spanish Tagger Using Cognates. In: Proc. of the Workshop on Cross-
language Knowledge Induction, in conjunction with the 11th Conference

http://dx.doi.org/10.1007/s10579-014-9276-1
http://dx.doi.org/10.1007/s10579-014-9276-1

30 Fei Xia et al.

of the European Chapter of the Association for Computational Linguistics
(EACL-2006), Trento, Italy

Hwa R, Resnik P, Weinberg A, Cabezas C, Kolak O (2005) Bootstrapping
Parsers via Syntactic Projection across Parallel Texts. Special Issue of the
Journal of Natural Language Engineering on Parallel Texts 11(3):311–325

Klein D, Manning CD (2003) Accurate unlexicalized parsing. In: Proceedings
of the 41st Meeting of the Association for Computational Linguistics, pp
423–430

Lewis W (2003) Mining and migrating interlinear text. In: Proceedings
of EMELD 2003 Workshop on Digitizing and Annotating Texts and
Field Recordings, East Lansing, Michigan, URL http://www.emeld.net/

workshop/2003/Lewis-paper.pdf

Lewis W, Xia F (2010) Developing odin: A multilingual repository of annotated
language data for hundreds of the world’s languages. Journal of Literary and
Linguistic Computing (LLC) 25(3):303–319

Lewis WD, Xia F (2008a) Automatically Identifying Computationally Rele-
vant Typological Features. In: Proc. of the Third International Joint Con-
ference on Natural Language Processing (IJCNLP-2008), Hyderabad, India

Lewis WD, Xia F (2008b) Automatically identifying computationally relevant
typological features. In: Proceedings of the Third International Joint Con-
ference on Natural Language Processing, Hyderabad, India, pp 685–690

Lewis WD, Farrar S, Langendoen DT (2001) Building a knowledge base of
morphosyntactic terminology. In: Proceedings of the IRCS Workshop on
Linguistic Databases, University of Pennsylvania, pp 150–156, URL www.u.

arizona.edu/\simfarrar/papers/LewFarLang01.pdf

Ma X, Xia F (2014) Unsupervised dependency parsing with transferring dis-
tribution via parallel guidance and entropy regularization. In: Proceedings
of ACL-2014, Baltimore, MD

Marcus M, Marcinkiewicz MA, Santorini B (1993) Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics 19(2):313–
330

de Marneffe MC, MacCartney B, Manning CD (2006) Generating typed de-
pendency parses from phrase structure parses. In: Proceedings of LREC
2006

McDonald R, Nivre J, Quirmbach-Brundage Y, Goldberg Y, Das D, Ganchev
K, Hall K, Petrov S, Zhang H, Täckström O, Bedini C, Castelló NB, Lee
J (2013) Universal Dependency Annotation for Multilingual Parsing. In:
Proceedings of ACL

Nivre J, Hall J, Nilsson J (2006) Maltparser: A data-driven parser-generator
for dependency parsing. In: Proceedings of LREC, vol 6, pp 2216–2219

Och FJ, Ney H (2003) A systematic comparison of various statistical alignment
models. Computational Linguistics 29(1):19–51

Täckström O, McDonald R, Uszkoreit J (2012) Cross-lingual word clusters for
direct transfer of linguistic structure. In: Proceedings of NAACL/HLT 2012

Täckström O, McDonald R, Nivre J (2013) Target language adaptation of
discriminative transfer parsers. In: Proceedings of NAACL 2013

http://www.emeld.net/workshop/2003/Lewis-paper.pdf
http://www.emeld.net/workshop/2003/Lewis-paper.pdf
www.u.arizona.edu/$\sim $farrar/papers/LewFarLang01.pdf
www.u.arizona.edu/$\sim $farrar/papers/LewFarLang01.pdf

Enriching a Massively Multilingual Database of Interlinear Glossed Text 31

Toutanova K, Klein D, Manning C, Singer Y (2003) Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of HLT-NAACL
2003, pp 252–259

Xia F, Lewis WD (2007) Multilingual structural projection across interlinear
text. In: Proc. of the Conference on Human Language Technologies (HLT/-
NAACL 2007), Rochester, New York, pp 452–459

Xia F, Lewis WD (2008) Repurposing Theoretical Linguistic Data for Tool De-
velopment and Search. In: Proc. of the Third International Joint Conference
on Natural Language Processing (IJCNLP-2008), Hyderabad, India

Xia F, Lewis WD, Poon H (2009) Language ID in the Context of Harvesting
Language Data off the Web. In: Proceedings of The 12th Conference of the
European Chapter of the Association of Computational Linguistics (EACL
2009), Athens, Greece

Xia F, Lewis C, Lewis WD (2010) The problems of language identification
within hugely multilingual data sets. In: Proceedings of the 7th International
Conference on Language Resources and Evaluation (LREC 2010), Valletta,
Malta, pp 2790–2797

Xiao M, Guo Y (2015) Annotation Projection-based Representation Learning
for Cross-lingual Dependency Parsing. CoNLL 2015

Yarowsky D, Ngai G (2001) Inducing Multilingual POS Taggers and NP Brack-
eters via Robust Projection across Aligned Corpora. In: Proc. of the 2001
Meeting of the North American chapter of the Association for Computa-
tional Linguistics (NAACL-2001), pp 200–207

	Introduction
	Building ODIN
	Enriching IGT Data
	Representing Enriched IGT in Xigt
	INTENT: a package for creating enriched IGTs
	XigtEdit: a GUI editor for enriched IGT
	Conclusion

