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Resource Poor Languages

• How to approach languages without a large corpus of 
annotated data?

• Can this approach be generalizable?
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• Unsupervised, semi-supervised induction 
• Word Clustering (Clark, 2003); Prototypes (Haghighi & Klein, 2006)

• Delexicalized transfer parsing 
• (Zeman, 2008; McDonald et. al 2011, 2013)

• Leveraging typological similarities 
• (Hana et. al, 2004; Feldman et. al 2006)
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Why a New Approach?

• Large quantities of data required for: 

• Statistical alignment 

• Unsupervised/Semi-supervised induction

• POS tags required for transfer parsing approach

• Language knowledge needed for similar language 

• Typological similarity != Genetic Similarity (Georgi et. al 2010)
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• The Online Database of Interlinear Text (ODIN) 

• 158,007 IGT instances 

• 1,496 languages 

• 2,027 documents

Aari [aiw] — (Dryer, 2007)

(Lewis & Xia, 2010)

http://www.ethnologue.com/language/aiw
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Why Use IGT?

• Gloss line contains grams

• Morphemes (when present) often delineated

• Translation and gloss often have matching tokens
• Can be used to align translation with language line

• …and “project” information

10

‘these	five	dogs’

keené				ʔaksí		dónq-ine-m

DEM.PLUR	dog				five-DEF-ACC

PRON		NUM		NOUN

PRON					NOUN			NUM



Ryan GeorgiJune 20, 2016

Outline

11

• Previous Work 

• Methodology 

• Tasks 

• Conclusion



Ryan GeorgiJune 20, 2016

Main Contributions

• I examine using IGT for three tasks:

12



Ryan GeorgiJune 20, 2016

Main Contributions

• I examine using IGT for three tasks:

• Word Alignment

12



Ryan GeorgiJune 20, 2016

Main Contributions

• I examine using IGT for three tasks:

• Word Alignment

• Part-of-Speech Tagging

12



Ryan GeorgiJune 20, 2016

Main Contributions

• I examine using IGT for three tasks:

• Word Alignment

• Part-of-Speech Tagging

• Dependency Parsing

12



Ryan GeorgiJune 20, 2016

Main Contributions

13

Word Alignment



Ryan GeorgiJune 20, 2016

Main Contributions

• Heuristic alignment 

• High precision word alignments with few instances

13

Word Alignment



Ryan GeorgiJune 20, 2016

Main Contributions

• Heuristic alignment 

• High precision word alignments with few instances

• Statistical approaches that leverage IGT format 

• Utilize massively multilingual IGT database 

• Demonstrate use of large quantities of IGT data from unrelated 
languages can improve alignment for resource-poor languages
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Main Contributions

• Projection-Based tagging suffers from: 

• Poor word alignments 

• Non-corresponding Projections

• Introduce classification-based approach 

• Outperforms projection
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Main Contributions

• Projection-based parsers compound errors: 

• Word Alignment 

• POS Tagging 

• Non-Correspondance

• Analyze divergence to improve parses
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Dependency Parsing
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Task Evaluation Settings

Word Alignment IGT

POS Tagging
IGT

Monolingual

Dependency Parsing
IGT

Monolingual
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✓
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Family Language ISO ODIN XL-IGT RG-IGT UD-2.0 HUTP

Afroasiatic Hausa hau ✓ ✓
Austronesian

Indonesian ind ✓ ✓
Malagasy mlg ✓ ✓

Indo-European

Bulgarian bul ✓ ✓
French fra ✓ ✓ ✓
Gaelic gla ✓ ✓
German deu ✓ ✓ ✓ ✓
Hindi hin ✓ ✓
Italian ita ✓ ✓ ✓
Spanish spa ✓ ✓ ✓
Swedish swe ✓ ✓
Welsh cym ✓ ✓

Koreanic Korean kor ✓ ✓ ✓
Uto-Aztecan Yaqui yaq ✓ ✓
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Tasks

Word Alignment 

Part-of-Speech Tagging 

Dependency Parsing
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Word Alignment Approaches

• Heuristic-based Approach 

• Statistical-based Approach
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Dagaare [dga] (Beerman and Hellan, 2002):

3SG PAST run-IMPERF go-IMPERF collect-IMPERF FACT berries

He/she	was	always	running	there	collecting	berries.

• String matches

• Stemmed String Matches

0 da zo-ro gɛ-rɛ wuo-ro la haane

collect

collectrun

run

http://www.ethnologue.com/language/dga
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23

Dagaare [dga] (Beerman and Hellan, 2002):

3SG PAST run-IMPERF go-IMPERF collect-IMPERF FACT berries

He/she	was	always	running	there	collecting	berries.

• String matches

• Stemmed String Matches

• Word → Gram matches

• Unmatched Tokens

FACTgo-IMPERF
0 da zo-ro gɛ-rɛ wuo-ro la haane

http://www.ethnologue.com/language/dga
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Statistical Word Alignment

• Two targets for translation line:

• L-T: Language → Translation Alignment
• Use L/T sentence pairs from the given language

• G-T: Gloss → Translation Alignment
• Gloss line is cross-linguistic “pseudo-language”

• Can use G/T sentence pairs from ALL languages

• (G-T+ALL ODIN)

24
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• Add word pairs from heuristic aligner to training data

L-T + Heuristic 

G-T + Heuristic 

G-T + ALL ODIN + Heuristic
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built	the

POS Tag Heuristic
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Basque [eus] — (Lafitte, 1962)

a.	Piarresek	egin		du			etchea.

"Peter	built	the	house."

make		has

http://www.ethnologue.com/language/eus
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a.	Piarresek	egin		du			etchea.

make		hasPeter-ERG	make		has		house-ABS

"Peter	built	the	house."
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0 da zo-ro gɛ-rɛ wuo-ro la haane
3SG PAST run-IMPERF go-IMPERF collect-IMPERF FACT berries

He/she	was	always	running	there	collecting	berries.

• Use English POS tagger

• Obtain word alignment

• Project POS tags to language line. 

PRON VERB VERB VERB NOUN
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POS Projection

32

0 da zo-ro gɛ-rɛ wuo-ro la haane
3SG PAST run-IMPERF go-IMPERF collect-IMPERF FACT berries

He/she	was	always	running	there	collecting	berries.

• Use English POS tagger

• Obtain word alignment

• Project POS tags to language line. 

• Words that remain unaligned: 

• Tag with “UNK”? 

• Tag with most common tag? (NOUN?)

FACTgo-IMPERF
gɛ-rɛ la
?? ??
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POS Tagging

• A few unaligned words is fine, but can be worse:

33

Chintang [ctn] (Bickel et. al, 2007): 

numphurɨk	bhir-ce							mett-ma-ce											par-ch-a	
a.place			precipice-ns		do.with/to-INF-3nsP		must-NPST-3s	
We	have	to	be	sensible		about	the	Namphuruk	cliff.

http://www.ethnologue.com/language/ctn
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a.place				precipice-ns		do.with/to-INF-3nsP		must-NPST-3s
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Gloss-Line Feature Extraction

• Most common tag for English words in gloss
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Gloss-Line Feature Extraction

• Most common tag for English words in gloss

• Each “sub-word,” including grams
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Gloss-Line Feature Extraction

• Most common tag for English words in gloss

• Each “sub-word,” including grams

• Has a Number
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Gloss-Line Feature Extraction

• Most common tag for English words in gloss

• Each “sub-word,” including grams

• Has a Number

• …and more

34

DET:1	
NOUN:1

NOUN:1 VERB:1	
ADP:1

VERB:1

a.place				precipice-ns		do.with/to-INF-3nsP		must-NPST-3s
*NUM*:1

*NUM*:1
INF:1	
3nsP:1

NPST:1	
3s:1

ns:1
do:1	

with:1	
to:1precipice:1

must:1
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All Features

35

subWords [.] [-] or [=] delineated tokens
alignedTag Tag for heuristically aligned translation word
wordHasNumber Contains a numeral
suffix last 1,2,3 characters of word
prefix first 1,2,3 characters of word
numSubwords # of subWords
prevSubwords subWords in previous token
nextSubwords subWords in following token
dictTag If subWord is English: most frequent POS tag
prevDictTag dictTag for prev word
nextDictTag dictTag for next word
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All Features
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subWords [.] [-] or [=] delineated tokens
alignedTag Tag for heuristically aligned translation word
wordHasNumber Contains a numeral
suffix last 1,2,3 characters of word
prefix first 1,2,3 characters of word
numSubwords # of subWords
prevSubwords subWords in previous token
nextSubwords subWords in following token
dictTag If subWord is English: most frequent POS tag
prevDictTag dictTag for prev word
nextDictTag dictTag for next word
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9-9.book1-1.boy 1.sbj-fut-study-fv

The	boy	will	study	the	book.

Obtaining Labeled Training Data

• Manual Annotation

• Automatic Projection

37

Zulu [zul] – (Buell, 2003) 

i-ncwadi.U-mfana u-zo-fund-a

http://www.ethnologue.com/language/zul
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9-9.book1-1.boy 1.sbj-fut-study-fv

The	boy	will	study	the	book.
NOUN VERB NOUN

9-9.book

The	boy	will	study	the	book.

1-1.boy 1.sbj-fut-study-fv

Obtaining Labeled Training Data

• Manual Annotation

• Automatic Projection

37

Zulu [zul] – (Buell, 2003) 

i-ncwadi.U-mfana u-zo-fund-a

http://www.ethnologue.com/language/zul
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9-9.book1-1.boy 1.sbj-fut-study-fv

Obtaining Labeled Training Data

• Manual Annotation

• Automatic Projection
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Zulu [zul] – (Buell, 2003) 

NOUN VERB NOUN

http://www.ethnologue.com/language/zul
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POS Tagging Results: IGT
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POS Tagging

• Now have POS tags on language of interest
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POS Tagging

• Now have POS tags on language of interest

• POS Tagging IGT instances interesting, but limited

• More general application: novel monolingual data

• Use POS tags from language line to train monolingual tagger

• Evaluate w/Universal Dependency Treebank (McDonald et. al, 2013)

39
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Monolingual POS Tagging

• Four settings:
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Monolingual POS Tagging

• Four settings:

• Projection
•         All instances:    with unaligned words

• Filtered instances:    no  unaligned words

• Classification:
• Projected training tokens

• Manual training tokens

40
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Monolingual POS Tagging

41

Projection: All

Projection: Filtered

Classifier: Projected Labels

Classifier: Manual Labels
Supervised: 1K Tokens
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Monolingual POS Tagging

42

Projection

Projection: Filtered
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Monolingual POS Tagging

43

Classifier: Projected Labels

Classifier: Manual Labels
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Monolingual POS Tagging
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Classifier: Manual Labels
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Monolingual POS Tagging
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Classifier: Projected Labels
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Monolingual POS Tagging
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Supervised: 1K Tokens
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Monolingual POS Tagging

47

Classifier: Projected Labels

Classifier: Manual Labels
Supervised: 1K Tokens
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Monolingual POS Tagging
• Another variable in using the UD-2.0 corpus:

• Corpus represents a large shift in domain
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Monolingual POS Tagging
• Another variable in using the UD-2.0 corpus:

• Corpus represents a large shift in domain

• UD-2.0:
• 20.8 words/sentence

• Newswire

• IGT sentences
• 6.1 words/instance

• Illustrative examples

• Try evaluating also on short UD-2.0 sentences

48
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Monolingual POS Tagging

49

Projection

Projection: Filtered

Classifier: Projected Labels

Classifier: Manual Labels
Supervised: 1K Tokens
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INTENT

Part-of-Speech 
Tagging

Gloss POS Tags
For Aligning Gloss/Trans

Lang POS Tags
For Training Parser, Learning Divergence

The INTENT System
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Dependency 
Parsing

Raw IGT

Enriched IGT

Word 
Alignment

Part-of-Speech 
Tagging Lang↔Trans Aln

For Projecting Tags

Lang↔Trans Aln
For Projecting Trees
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INTENT

Part-of-Speech 
Tagging

Gloss POS Tags
For Aligning Gloss/Trans

Lang POS Tags
For Training Parser, Learning Divergence

The INTENT System
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For Projecting Tags
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DS Projection

53

Rhoddod      yr     athro        lyfr        i’r      bachgen      ddoe

The teacher gave a book to the boy yesterday

Welsh [cym] – (Bailyn, 2004) 

http://www.ethnologue.com/language/cym
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DS Projection
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DS Projection

53

Rhoddod      yr     athro        lyfr        i’r      bachgen      ddoe

The teacher gave a book to the boy yesterday

gave

teacher

the

book

a

to

boy

the

yesterday

Welsh [cym] – (Bailyn, 2004) 

http://www.ethnologue.com/language/cym
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DS Projection

53

Rhoddodd

athro lyfr i’r ddoe

bachgen

i’r

yr

Rhoddodd

athro lyfr i’r ddoe

bachgenyr
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DS Projection

53

Rhoddodd

athro lyfr i’r ddoe

bachgenyr
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Dependency Parsing: Projection

54

G-T + All ODIN

G-T + All ODIN + Heur

Heuristic

Heuristic + POS Matching

Manual Alignments

Alignment Method
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Language Divergence
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• Direct Correspondence Assumption (DCA) (Hwa et. al, 2005)
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Language Divergence

• Direct Correspondence Assumption (DCA) (Hwa et. al, 2005)

• Language Divergence (Dorr, 1994)

55
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Divergence Types

56

Head-Switching Divergence

English German

eating

like

I

esse
eat

Ich
I

gern
‟likingly”

I like eating Ich esse gern 
(“I eat likingly’)

Promotional Divergence
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Divergence Types

57

casa
house

house

entered

John

the

entró
entered

Juan
John

en
in

la
the

Structural Divergence

John entered the house Juan entró en la casa 
(“John entered in the house”)

English Spanish
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Divergence Types

58

Conflational Divergence

I stabbed John Yo le di puñaladas a Juan 
(“I gave knife-wounds to John”)

English Spanish

stabbed

I John

di
gave

Yo
I

le
him

puñaladas
knife-wounds

a
to

Juan
John
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Addressing DS Divergence

• Results for DS projection on IGT show divergence 

• Learn when projection is unreliable?

59
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Alignment Types
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Swap

Alignment
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Alignment Types

60

Swap

Alignment

(Addresses Head-Switching)
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Alignment Types
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Merge

Alignment
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Alignment Types

61

Merge

Alignment

(Addresses Conflational Divergence)
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Alignment Types
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Spontaneous

Alignment

si

sj sk tj

ti

tl

tk
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Alignment Types
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Spontaneous

Alignment

si

sj sk tj

ti

tl

tk

(Addresses Structural Divergence)
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Alignment Types
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Match

Alignment
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Alignment Types

63

Match

Alignment

(No Divergence)
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Projection-Enhanced Parsing

64

Projection Malt + ProjectionMalt Baseline
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Measuring and “Correcting” Divergence

• Based on the idea of DUSTer (Dorr, 2002) 

• Automatically rewrite dependency structures to 
pseudo-English that is more similar to target language

65
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Tree Operations
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Tree Operations
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Swap
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Tree Operations
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Merge

j

l m n
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i k
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Tree Operations
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Merge

j+l

m no p

h

i k
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Tree Operations
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Tree Operations

68

Remove

j

m no p

h

i k
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Resolving Divergence

69

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  

caused

Mohan Mina given

book

yesterday

a

throughbeto

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

ne
[erg]

se
[instr]

ko
[dat]
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Resolving Divergence

70

Detect Spontaneous Nodes / Remove

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  

caused

Mohan Mina given

book

yesterday

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

caused

Mohan Mina given

book

yesterday

a

throughbeto

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

ne
[erg]

se
[instr]

ko
[dat]
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Resolving Divergence

70

Detect Spontaneous Nodes / Remove

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  

caused

Mohan Mina given

book
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Arif
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give [Causative]
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kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book



Ryan GeorgiJune 20, 2016

Resolving Divergence

71

Detect “Merge” Alignments / Merge

caused

Mohan Mina given

book

yesterday

Arif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  
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Resolving Divergence

71

Detect “Merge” Alignments / Merge

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  

caused+given

Mohan Mina book yesterdayArif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book
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Resolving Divergence

72

All Remaining Alignments Match 

caused+given

Mohan Mina book yesterdayArif

xilavAyI
give [Causative]

mohana
Mohan

kala
yesterday

Arif
Arif

mInA
Mina

kiwAba
book

English: 
Mohan caused Mina to be given a book through Arif yesterday

Hindi/Urdu: 
mohana ne kala Arif se mInA ko kiwAba xilavAyI  
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Measuring Divergence

73

Remove +MergeBaseline +Swap
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Learning Divergence
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Learning Divergence

• Measured swaps, merges, and removals
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Learning Divergence

• Measured swaps, merges, and removals

• Analyze the patterns of operations to learn post-
processing rules

74
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Multiply-Aligned Tokens

• For each POSi, measure attachment direction 

• At test time, choose head token from previous results 
POSi	→		P(right)	=	75%	
POSi	→		P(left)		=	25%

75

si

sj sk tj

ti

tl

tk
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Swapped Tokens

• For each (POSi, POSj) pair 
• Measure frequency of swap operation 

• Apply swap at test time if 
• Occurs more than 3 times 
• More than 60% of occurrences: 

(POSi,POSj)	→	P(swap)	=	75%		[25/33]	
(POSl,POSm)	→	P(swap)	=	10%		[1/10]	
(POSp,POSq)	→	P(swap)	=	100%	[1/1]

76

si

sj sk tj

tk

ti

tl
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Spontaneous Tokens

• For each lexical item (ti) 
• Measure attachment direction 

• At test time: 
• Attach in majority direction 
• Backoff: attach in overall language-preferred direction 

tn	→	P(right)	=	75%	
tm	→	P(left)		=	[unseen]	
Poverall(left)		=	54%

77

si

sj sk tj

tk

ti

tl
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Applying Rules to Projection
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Ryan GeorgiJune 20, 2016

Applying Rules to Projection

• Two baselines:

• Prefer leftward attachment for merge/spontaneous

• Prefer rightward attachment for merge/spontaneous

• No swap handling

• Use learned merge, spontaneous, and swap rules

78
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Rule-Enhanced Projection

79
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Use Learned Patterns
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(Re)Informing the Parser
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(Re)Informing the Parser

80

Baseline (Assume Left Attachments) 

Baseline (Assume Right Attachments) 

Use Learned Patterns

Projection Options Parser Options

Baseline (Assume Left Attachments) 

Baseline (Assume Right Attachments) 

Use Learned Patterns 

No Projection Features
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Parser with Improved Projections

81
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Monolingual DS Parsing

• Use IGT-projected DSs to train monolingual parser 

• Evaluate parser on the Universal Dependency corpus

82
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Monolingual DS Parsing
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Outline

84

• Previous Work 

• Methodology 

• Tasks 

• Conclusion
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Summary of Results

• 0.85 F1 score for heuristic alignment 

• 0.83 F1 score for improved statistical alignment 

• 0.49 F1 score for traditional approach

85

Word Alignment
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Summary of Results

• 92% accuracy on IGT 
• With classifier trained on manual gloss-line tags 

• 67% using projection 

• 70% accuracy on monolingual data 
• Using classifier-bootstrapped taggers 

• 56% using projection

86

Part-of-Speech Tagging
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Summary of Results

• Analyzed language divergence 

• 87% accuracy for projection-feature enhanced parser 

• 84% for projection alone 

• 67% for baseline parser 

• 89% accuracy for enhanced parser w/rewrite rules 

• 88% accuracy for enhanced projection

87

Dependency Parsing
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Part-of-Speech 
Tagging

INTENT

Part-of-Speech 
Tagging

Gloss POS Tags
For Aligning Gloss/Trans

Lang POS Tags
For Training Parser, Learning Divergence

The INTENT System
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AlignmentLang↔Trans Aln

For Projecting Tags
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For Projecting Trees
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Using INTENT

• Software package is available 

• Code available at rgeorgi.co/intent 

• Online demo at rgeorgi.co/intentweb
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Impact of INTENT
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Impact of INTENT

• Used to enrich ODIN v2.1

• Used at UW Linguistics Seminar SPR’15: 

• Computational Methods in Language Documentation 

• Being used to visualize enriched data in ODIN editor

• Will be used for AGGREGATION Phase 2

90

http://editor.xigt.org/user/demo
http://depts.washington.edu/uwcl/aggregation/
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Future Work
• Word Alignment: 

• Use IGT-extracted alignments to bootstrap parallel data 

• “Clue-Based” alignment (Tiedemann 2003)

• POS tagging: 
• Use extracted POS tags to constrain induction approaches 

• (Haghighi & Klein 2006, Mann & McCallum 2008)

• Dependency Parsing 

• Use modified parser for partial trees (Spreyer & Kuhn, 2009) 

• Clustering/Similarity approaches (Koo et. al, 2008; Mirroshandel et. al., 2012)
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• Utilized IGT's unique format to provide improvements 
over uninformed methods
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Conclusion

• Utilized IGT's unique format to provide improvements 
over uninformed methods

• Created generalized IGT enrichment system covering 
1,500+ languages

• Demonstrated potential for IGT-bootstrapped NLP tools 
in resource-poor settings
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Thank You
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Related Software
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INTENT rgeorgi.co/intent

ODIN Editor rgeorgi.co/xigtedit

ODIN v2.1 rgeorgi.co/odin
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POS Projection Confusion Matrix

100

ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X PREC
ADJ 57 1 0 0 2 4 0 6 0 0 0 0.81
ADP 0 52 2 10 2 0 0 6 2 2 0 0.68
ADV 0 2 69 0 2 5 0 0 0 0 0 0.88
CONJ 0 0 0 20 0 0 0 0 0 0 0 1
DET 2 6 0 2 370 0 0 6 2 0 0 0.95
NOUN 4 1 10 0 2 649 2 4 0 26 0 0.93
NUM 0 0 0 0 0 0 16 2 0 0 0 0.89
PRON 0 0 2 0 14 0 0 219 0 6 0 0.91
PRT 0 4 0 0 0 0 0 0 26 2 0 0.81
VERB 1 2 1 0 0 20 0 2 0 574 0 0.96
X 0 0 0 0 0 0 0 25 0 0 0 0
Unaligned 8 48 24 4 56 58 2 50 18 114 0
% Unaligned 11.1 41.4 22.2 11.1 12.5 7.9 10 15.6 37.5 15.7 0

REC 0.79 0.45 0.64 0.56 0.83 0.88 0.8 0.68 0.54 0.79 0
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Classifier Confusion Matrix
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ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X PREC
ADJ 18 0 0 0 0 0 0 2 0 0 0 0.9
ADP 0 40 1 6 2 0 0 2 9 1 0 0.66
ADV 1 0 27 0 1 0 0 0 0 0 0 0.93
CONJ 0 0 0 4 0 0 0 0 0 0 0 1
DET 0 0 0 0 112 3 0 1 1 0 0 0.96
NOUN 3 0 6 0 3 204 1 2 1 7 0 0.9
NUM 0 0 0 0 0 0 5 0 0 0 0 1
PRON 0 0 0 0 3 0 0 93 0 0 0 0.97
PRT 0 0 0 0 0 0 0 0 3 0 0 1
VERB 0 1 0 0 0 4 0 0 0 211 1 0.97
X 0 0 0 0 0 0 0 0 0 0 0 0

REC 0.82 0.98 0.79 0.4 0.92 0.97 0.83 0.93 0.21 0.96 0


