
A Web-framework for ODIN Annotation

Ryan Georgi Michael Wayne Goodman Fei Xia

University of Washington
Seattle, WA, USA

{rgeorgi,goodmami,fxia}@uw.edu

Abstract

The current release of the ODIN (On-
line Database of Interlinear Text) database
contains over 150,000 linguistic examples,
from nearly 1,500 languages, extracted
from PDFs found on the web, representing
a significant source of data for language
research, particularly for low-resource lan-
guages. Errors introduced during PDF-to-
text conversion or poorly formatted exam-
ples can make the task of automatically an-
alyzing the data more difficult, so we aim
to clean and normalize the examples in or-
der to maximize accuracy during analysis.
In this paper we describe a system that al-
lows users to automatically and manually
correct errors in the source data in order to
get the best possible analysis of the data.
We also describe a RESTful service for
managing collections of linguistic exam-
ples on the web. All software is distributed
under an open-source license.

1 Introduction

The current release of the ODIN (Online Database
of INterlinear Text) database contains over
150,000 linguistic examples in the form of inter-
linear glossed text (IGT), an example of which
is shown in Fig. 1. These IGT instances are
extracted from PDFs found on the web, repre-
senting a significant source of data for computa-
tional typology, as well as providing information
for resource-poor languages (RPLs). These in-
stances are additionally useful for inducing anno-
tation on RPLs, as demonstrated by Georgi et al.
(2014, 2015), in which the relationships between
words and glosses are identified and encoded for
the purpose of enriching the data with annotations
not present in the original examples. However,

keené Paksí dónq-ine-m
DEM.PLUR dog five-DEF-ACC
‘these five dogs’

Figure 1: An IGT instance of Aari [aiw], an
Omotic language of Ethiopia. Extracted from
Dryer (2007)

the PDF-to-text conversion process can introduce
noise into the data, and some examples are not for-
matted well in the original document. These and
other issues can decrease the efficacy of the auto-
matic structural analysis.

To address these issues, we have created a
web interface that combines automatic cleaning
and normalization procedures with a user-friendly
browser-based GUI to enable human annotators to
review and improve the data quality of the avail-
able IGT instances. Additionally, as editing is
meant as one of multiple capabilities of the final
system, this browser interface is driven by a REST-
ful (Fielding, 2000) backend system that will sup-
port future interface extensions.

2 Related Work

The system we describe is not the first web-
based editor of IGT, but none of the existing
systems (for IGT or annotation in general) that
we’re aware of fit our use case. TYPECRAFT1

(Beermann and Mihaylov, 2014) is a wiki-based
collaborative IGT editor. As it directly targets
IGT, the editor is designed to support tabular an-
notations and is a useful tool for users creating
new IGT. However, it limits the kinds of annota-
tions (morphemes, POS tags, glosses, etc.) and
it is not obvious how the ODIN model (see Sec-
tion 3) would fit, nor how our automated trans-
formation scripts (see Section 4) would be inte-

1http://typecraft.org



grated. The brat rapid annotation tool2 (BRAT;
Stenetorp et al., 2012), with its RESTful web API,
is somewhat similar in implementation to our sys-
tem, but does not seem to support tabular visu-
alization of hierarchical annotations. The cur-
rent annotation task for our users is primarily cor-
recting errors in text extracted from PDFs, which
is similar in some ways to how RECAPTCHA
(Von Ahn et al., 2008) lets users provide clean
transcriptions of text in images. But, unlike RE-
CAPTCHA, our task requires some knowledge of
IGT structure.

3 ODIN Data

The data that we are seeking to annotate in this pa-
per comes from the ODIN 2.1 data release,3 which
provides the data in two formats: the plain text for-
mat, and in Xigt, an extensible format for encod-
ing IGT (Goodman et al., 2014).

3.1 Building ODIN
The ODIN database was constructed in several
steps. First, documents were retrieved using a
meta-crawling approach, where queries with IGT-
like search terms such as {3SG, ACC} were di-
rected to online search engines. The resulting doc-
uments were converted to text format using an off-
the-shelf PDF-to-text conversion tool. This text
output was subsequently used to extract features
to detect the IGT instances within the text, as well
as build a language identification system. The full
details of the construction of the ODIN database
can be found in Lewis and Xia (2010).

3.2 Extracted Textual IGTs
The first format for representing IGT is intended to
be human-readable while maintaining the appro-
priate metadata for processing. An example of this
format can be seen in Fig. 2. This format includes
the textual content of the IGT, as well as whether a
line belongs to the language line (L), gloss line (G)
or translation line (T) of the instance, or whether it
is metadata (M). In addition, secondary tags exist
for more fine-grained categorization, such as for
corrupted instances (CR), language name metadata
(LN), etc. Furthermore, a doc_id is provided
for reference to the original source document, as
well as line numbers referring to the lines from the
pdftotext4 output of the PDF document.

2http://brat.nlplab.org
3http://depts.washington.edu/uwcl/odin
4http://www.foolabs.com/xpdf

3.3 Xigt-encoded IGTs

The Xigt format (Goodman et al., 2014) encodes
all of this information in a model that is better
suited for computational work. The Xigt pack-
age provides codes for either XML or JSON, and
enables standoff annotation that is capable of pre-
serving the original text format while adding mul-
tiple annotation layers (Xia et al., 2016). This
is the format used for storing additional annota-
tion, including the syntactic enrichment found in
Xia et al. (2016), as well as metadata such as an-
notator comments. This standoff annotation is im-
plemented as XML elements we call tiers that re-
fer back to the elements they annotate.

4 Automatic Processing

The data in ODIN was assembled using an ap-
proach that combined metacrawling for IGT-
containing documents with a classifier trained
to detect IGT-formatted instances (Lewis and Xia,
2010). The resulting data can look like that in
Fig. 2; with a variety of corruption and non-
linguistically relevant data. To speed up annota-
tion, we run several automated cleaning and nor-
malization steps before handing the instance off to
human annotators.

4.1 Cleaning

In the first step, we attempt to clean any artifacts
introduced by the PDF-to-text conversion process.
First, invalid characters for XML data, such as
the form feed control character U+000C, are auto-
matically replaced with the Unicode replacement
character U+FFFD. Line and character corruption
are addressed next. The instance in Fig. 2 exhibits
both line corruption and character corruption. For
line corruption, we merge two lines of the same
type (e.g., L) if they are adjacent, one or both has
the corruption tag CR, and any characters in the
lines line up with whitespace in the other. In this
example, the ‘ak’ on line 875 would be combined
with the rest of the text on 876 as the two lines
are merged into one. The output of the clean-
ing process is output to a new cleaned Xigt tier.
The cleaning process also removes blank lines (if
any) and superfluous initial columns of whitespace
(consistently across lines to avoid altering column
alignments). Currently we do not attempt to au-
tomatically fix character corruption (e.g., when a
character’s diacritics are erroneously extracted as a
separate character), but instead allow users to cor-



doc_id=1482 874 878 M+AC+LN L+CR L+SY+CR G T+DB
language: Haitian (hat)
line=874 tag=M+AC+LN: (25) Haitian CF (Lefebvre 1998:165)
line=875 tag=L+CR : ak
line=876 tag=L+SY+CR: Jani pale lii/j
line=877 tag=G : (John speak with he)
line=878 tag=T+DB : (a) ’John speaks with him’, (b) ’John speaks with himself’

Figure 2: A text-format ODIN IGT instance exhibiting line corruption, character corruption, and lan-
guage names and parentheticals, extracted from Heine (2001).

rect the corrupted characters (including Unicode),
and we make the original PDF available to the user
for consultation, if it is necessary. We are also in-
vestigating an alternative PDF extractor that more
accurately extracts Unicode characters, diacritics,
combined ligatures, etc.

4.2 Normalization
The second automated step we perform relates to
information that is either non-linguistic or meta-
linguistic in nature. In Fig. 2, such information in-
cludes the instance numbering (25), the language
name (Haitian), author citation (Lefebvre), and
quotation marks (on line 878). In the instance in
Fig. 2, these elements have been placed on a line
above the language line, which the IGT detection
algorithm has tagged as non-IGT data (tag=M).
Other times, this data occurs on the language line
and thus instance numbering on the language line
are removed with regular expressions. Other in-
formation, such as the language name or linguistic
construction, are detected and placed on a sepa-
rate M line. However, not all data can be reliably
automatically extracted, such as the co-indexation
variables i and j in line 876 which could be inter-
preted as being part of the word.

4.3 Enrichment
In addition to cleaning and normalizing, through
the use of the INterlinear Text ENrichment Toolkit
(INTENT) (Georgi, 2016; Xia et al., 2016), we au-
tomatically generate word alignments and part-of-
speech tags for the different lines of IGT. Cur-
rently, this is visualized in the editor, as seen in
Fig. 5, and will be able to be corrected by the an-
notators for subsequent tasks.

5 A RESTful IGT Server

While our immediate needs for the editor are fairly
simple, we anticipate expansion for future tasks
that may be required by the RiPLes (information
engineering and synthesis for Resource-Poor Lan-
guages) project (Xia et al., 2016). In order to fa-

cilitate such expansion, we created the backend
for the editor as a general-purpose RESTful IGT
server with the HTTP methods listed in Fig. 4.

The data is stored in a custom JSON-based
filesystem database so that individual IGTs can
be updated without having to reserialize an entire
corpus, but the database abstraction layer makes
it straightforward to later add support for other
databases. Through the Accept request header, a
user may ask for either the XML or JSON serial-
ization of the data. More information on this inter-
face can be found at the project page at:
https://github.com/xigt/sleipnir

6 Online Editing Environment

The main interface that end-users will experience
at this point is the online editing environment, a
screenshot of which is provided in Fig. 3. This
browser-based interface allows us to invite an-
notators around the world to participate without
needing to install Python or any of the supporting
packages required to work with the Xigt-formatted
ODIN data.

The interface is contained in three main panes;
in Fig. 3, labels (1) and (2) mark the corpus and
instance browsers, respectively, while the rest of
the window is dedicated to the instance editor.

Loading an Instance To start working on an in-
stance, an annotator first selects the corpus from
the corpus browser (1) and then the particular in-
stance from (2). Instances that have been previ-
ously annotated are highlighted with the color of
their rating, while the currently displayed instance
is highlighted in cyan.

Validating an Instance as IGT Once an in-
stance is loaded in the editor, the annotator is pre-
sented with an interface showing only the raw text
of the instance (not shown), and the rating buttons
(4). Since instances in ODIN have been automat-
ically identified, some instances may not, in fact,
be IGT, or may be too corrupted to derive what the
original content might have been. At this point,



Figure 3: Screenshot of the browser-based editor being used to edit a sentence. (1) and (2) show the
corpus and instance browsers, respectively, while (3) labels the instance editing area, and (4) shows the
rating system.

GET /corpora
retrieve list of available corpora

GET /corpora/<CID>
retrieve a corpus by its identifier <CID>

GET /corpora/<CID>/summary
retrieve a summary of the contents of corpus <CID>

GET /corpora/<CID>/igts
retrieve the list of IGTs for corpus <CID> (parameters
exist for filtering this list)

GET /corpora/<CID>/igts/<IID>
retrieve a single IGT by its identifier <IID> from cor-
pus <CID>

POST /corpora
add a new corpus

POST /corpora/<CID>/igts
add a new IGT to corpus <CID>

PUT /corpora/<CID>/igts/<IID>
assign or replace IGT <IID> in corpus <CID>

DELETE /corpora/<CID>
delete corpus <CID>

DELETE /corpora/<CID>/igts/<IID>
delete IGT <IID> in corpus <CID>

Figure 4: HTTP methods for the IGT server,
where <CID> refers to the corpus identifier and
<IID> the single IGT identifier.

the annotator may click the red “bad quality” rat-
ing button to flag that instance. If the instance is
IGT and of acceptable quality they may continue
onto the next task.

Cleaning After the annotator has verified that
an instance is valid, they may click the Gener-
ate Cleaned Tier button to trigger the automatic
cleaning procedure described in Section 4.1. The
annotator is then given an opportunity to manu-
ally correct any errors made by the automatic cor-
ruption removal. The cleaning stage only corrects
errors introduced by the PDF-to-text conversion
process, so for clean instances there is little to be
done here. If the annotator has made a mistake or
wishes to start over, they may restore the content
of an item to the state after automatically clean-
ing, or they may regenerate the clean tier entirely
by re-invoking the cleaning procedure on the raw
data. The raw tier cannot be edited, so the anno-
tator can always get back to the original represen-
tation. Once satisfied, the annotator may continue
to the normalization step.

Normalization By clicking the Generate Nor-
malized Tier button, the annotator triggers the
normalization procedure described in Section 4.2.
In addition to placing non-IGT information on M
lines, annotators are also asked to correct spu-
rious or missing whitespace, ensure that there
are an equal number of language-line and gloss-
line tokens, and, when possible, an equal num-
ber of morpheme or clitic boundaries denoted by
‘-’ or ‘=’, following the Leipzig Glossing Rules
(Comrie et al., 2015). Just as with the cleaning



Figure 5: Normalized tier analysis, with the sec-
tion labeled (1) showing the annotation indicator
labels and (2) showing the enrichment and align-
ment information. The colors highlighted in (2)
are to indicate which elements of the IGT in-
stance are referenced by another element. Here,
the alignment between the English go and the
Japanese ikasetas visualized. The titles on the left
refer to the tier type represented in the Xigt repre-
sentation.6

step, the annotator may restore the original nor-
malized content of an item or regenerate the nor-
malized tier entirely. At this point, if the annotator
believes they have satisfactorily met the normal-
ization guidelines, they are done editing and con-
tinue to the analysis step to ensure the system is
able to accurately infer the IGT structure.

Analysis When the annotator clicks the Analyze
Normalized Tier button, the editor will present
an analysis of the IGT such as the one shown in
Fig. 5. This analysis includes both a series of in-
dicators (1) to alert the annotator to the aforemen-
tioned guidelines, and a visualization of the au-
tomatic alignment and enrichment (2) performed
by INTENT (see Section 4.3). The enrichment in-
cludes both the automatic word, morpheme, and
gloss segmentation (words, morphemes, glosses,
respectively), as well as word alignment between
gloss and translation and part-of-speech tags for
each line (bilingual-alignments, pos). There are
currently four indicators:

COL language and gloss tokens are aligned with
whitespace into columns

TAG language, gloss, and translation lines all ex-

ist and have no extraneous metadata on them

GLM language and gloss lines have the same
number of morphological units

GLW language and gloss lines have the same
number of whitespace-separated tokens

When an indicator shows red, the annotator
should go back to the normalization (or possibly,
the cleaning) step and make more corrections, then
reanalyze. Occasionally an indicator shows red
when there is no error; e.g., a word in the language
line might have a hyphen that is not a morpho-
logical boundary and is thus glossed with a non-
hyphenated token. The visualization of the auto-
matically aligned and enriched IGT illustrates to
the annotator how well the system was able to in-
fer the structure of the IGT. Some problems that
could not be detected with the indicators may be-
come obvious by the presence of incorrect align-
ments, and the annotator can use this information
to adjust the textual representation until proper
alignments are obtained. These two facets of the
analysis—indicators and visualization—help the
annotator see how usable the instance will be for
further processing.

Rating and Saving the Instance Finally, if the
annotator has proceeded to the normalization or
analysis steps, they may choose to rate the instance
as bad (red), unclean (yellow) or clean (green), de-
pending on the level of corruption of the instance.
A field is provided to add further comments that
will be saved into the IGT file.

User Management Currently, users are identi-
fied by a unique 8-character userid string, that also
serves as the login. Annotator accounts are created
and a backend corpus management script is used to
initialize copies of corpus subsections that are as-
signed to the annotators. Annotators’ ratings and
comments are saved in these files along with their
userid, so that inter-annotator agreement can be
quickly and efficiently calculated across selected
overlapping corpus segments.

Availability A fully functioning demonstration
of the interface containing Chinese, German, and
Japanese instances may be accessed at:
http://editor.xigt.org/user/demo
The source code is released under the MIT license

6See Goodman et al. (2014) for more.



and is available at:
https://github.com/xigt/yggdrasil

7 Conclusion and Future Improvements

The system we have presented here greatly
streamlines the process of refining and display-
ing IGT data. Such clean, electronically avail-
able IGT data can be of great use to linguists
searching for examples of particular phenomena,
typologists looking to compare linguistic informa-
tion over the thousands of languages for which
IGT data is available, and computational linguists
looking to build NLP tools for resource-poor lan-
guages.

In the future, we hope to further expand the
editing capabilities of the system to include giv-
ing annotators the ability to edit word alignment
and POS tag data. Such annotation would provide
a high-quality set of data for typological research,
as well as evaluation data for the automatic enrich-
ment methods used.

Finally, while the current system is used only
for display and editing, we hope to include the
ability to search over IGT corpora in a subsequent
version of the tool, replacing the current ODIN
search capability7.

Acknowledgments

This work is supported by the National Science
Foundation under Grant No. BCS-0748919. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect the views of
the NSF.

References

Dorothee Beermann and Pavel Mihaylov. 2014.
TypeCraft collaborative databasing and re-
source sharing for linguists. Language re-
sources and evaluation 48(2):203–225.

Bernard Comrie, Martin Haspelmath, and
Balthasar Bickel. 2015. Leipzig glossing rules.
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf.

Matthew S Dryer. 2007. Noun phrase structure.
In Timothy Shopen, editor, Language Typology
and Syntactic Description, Language typology
and syntactic description, Cambridge, United
Kingdom, pages 151–205.
7http://odin.linguistlist.org/

Roy Fielding. 2000. Architectural Styles and
the Design of Network-based Software Archi-
tecture. Ph.D. thesis, University of California,
Irvine.

Ryan Georgi. 2016. the INter-
linear Text ENrichment Toolkit.
http://intent-project.info/.

Ryan Georgi, William D Lewis, and Fei Xia. 2014.
Capturing divergence in dependency trees to
improve syntactic projection. Language Re-
sources and Evaluation 48(4):709–739.

Ryan Georgi, Fei Xia, and William D Lewis. 2015.
Enriching interlinear text using automatically
constructed annotators. LaTeCH 2015 page 58.

Michael Wayne Goodman, Joshua Crowgey, Fei
Xia, and Emily M Bender. 2014. Xigt: extensi-
ble interlinear glossed text for natural language
processing. Language Resources and Evalua-
tion 49(2):455–485.

Bernd Heine. 2001. Accounting for creole reflex-
ive forms. Pidgins and Creoles Archive (8).

William D Lewis and Fei Xia. 2010. Developing
ODIN: A Multilingual Repository of Annotated
Language Data for Hundreds of the World’s
Languages. Literary and Linguistic Computing
25(3):303–319.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi
Tsujii. 2012. BRAT: a web-based tool for NLP-
assisted text annotation. In Proceedings of the
Demonstrations at the 13th Conference of the
European Chapter of the Association for Com-
putational Linguistics. Association for Compu-
tational Linguistics, pages 102–107.

Luis Von Ahn, Benjamin Maurer, Colin
McMillen, David Abraham, and Manuel
Blum. 2008. recaptcha: Human-based char-
acter recognition via web security measures.
Science 321(5895):1465–1468.

Fei Xia, William D Lewis, Michael Wayne Good-
man, Glenn Slayden, Ryan Georgi, Joshua
Crowgey, and Emily M Bender. 2016. Enrich-
ing a massively multilingual database of inter-
linear glossed text. Language Resources and
Evaluation pages 1–29.


