Information Ordering

LING 573 — NLP Systems & Applications 4/30/2018

WASHINGTON

Using External Python Packages

- If you want to use additional python packages on patas:
 - python3 -m venv \$SOME_PATH
 - create a requirements.txt file for the packages you use in your root dir
 - use **\$SOME_PATH/bin/python3** to run code
 - ...you can also add \$SOME_PATH/bin to your \$PATH variable

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Using External Python Packages

- This will allow:
 - local installation of packages from PyPy
 - Other user to quickly install dependencies:
 - pip install -r requirements.txt
- Standard way of supporting dependencies in python packaging

Semi-Supervised Document Clustering

0

KMeans Clustering on TAC Categories 5 Clusters, 20 Runs

VASHINGTON

= tf•idf via sklearn

0

Supervised Samples Seeding Cluster

12

= GloVe via spacy

•

20

18

16

Semi-Supervised Document Clustering

- Code on github:
 - <u>github.com/rgeorgi/tac-clusters</u>

Information Ordering: Combining Experts

Integrating Ordering Preferences Bollegala et al, 2012

- Key idea:
 - Information ordering is a combination of factors.
 - Consider multiple "experts" that model different factors
 - Combine in a linear combination to determine ordering

- I. Chronological Expert
- 2. Probabilistic Expert
- 3. Topical-closeness Expert
- 4. Precedence Expert
- 5. Succession Expert

Training "Experts"

Basic Framework

- Build one expert for each preference
 - Iterate through pairs of sentences (u, v) and partial summary Q
 - prefer u before v if score > 0.5
 - prefer v before u if score < 0.5
- Learn weights for linear combination
- Use greedy algorithm to produce final order

 $PREF_{total}(u,v,Q) = \sum w_e PREF_e(u,v,Q)$ $e \in E$

Chronological Expert

- If sentences from two different documents with different times
 - Order by document timestamp
- If sentences from same document
 - Order by order within document
- Otherwise, no preference

WASHINGTON

 $PREF_{chro}(u,v,Q) =$ 0.5 ()

$$T(u) < T(v)$$
$$\left[D(u) = D(v)\right] \land \left[N(u) < N(v)\right]$$
$$\left[T(u) = T(v)\right] \land \left[D(u) \neq D(v)\right]$$

otherwise

Probabilistic Expert

- Based on Lapata (2003)
- Model the probability of u preceding v in summary features:
 - POS tags
 - Dependency Structures
 - Lemmas (Smoothed)
- 0.5 is returned for equally likely outcomes, u preferred if > 0.5

$$PREF_{prob}(u,v) =$$

 $1+P(v \mid u)-P(u \mid v)$

Topical-closeness Expert

- Same motivation as <u>Barzilay, 2002</u> (Clustering sentences into "themes")
 I. The earthquake crushed cars, damaged hundreds of houses, and terrified people for
 - I. The earthquake crushed cars, damaged hundreds of kilometers around.
 - 2. A major earthquake measuring 7.7 on the Richter scale rocked north Chile Wednesday3. Authorities said two women, one aged 88 and the other 54, died when the crushed
 - 3. Authorities said two women, one aged a under the collapsing walls
- | and 3 discuss theme of impact
- 2 describes magnitude and location
- Better order (2), (1, 3)

COMPUTATIONAL LINGUISTICS

Topical-closeness Expert

- Q = sentences ordered thus far, $q \in Q$
- Look at candidate sentences u, v
 - Pick one with closest similarity to already ordered sentence q
 - 0.5 if similarity is identical

WASHINGTON

 $PREF_{topic}(u,v,Q) = -$

 $topic(l) = \max_{q \in Q} sim(l,q)$

$$\begin{bmatrix} Q = \varnothing \end{bmatrix} \lor \begin{bmatrix} topic(u) = topic(v) \end{bmatrix}$$
$$\begin{bmatrix} Q \neq \varnothing \end{bmatrix} \lor \begin{bmatrix} topic(u) > topic(v) \end{bmatrix}$$

otherwise

Topical-closeness Expert

- Bollegala et al use cosine similarity
 - Could use any similarity measure, suggest WordNet as an alternative

 $topic(l) = \max_{q \in Q} sim(l,q)$

Precedence Expert

- With following example:
- (a) Honduran death estimates grew from 32 to 231 in the first two days, to 6,076 with 4,621 missing. (b) Honduras braced as category 5 Hurricane Mitch approached.
- (c) The EU approved 6.4 million in aid to Mitch's victims.
- (b) introduces event that is needed to understand (a), (c)
 - (a) and (c) contain information preceded by (b)

Preceden $pre(l) = \frac{1}{|Q|} \sum_{q \in Q} \max_{p \in P_q} sim(p, l)$

• For candidate sentence *l*:

- For every already ordered sentence q:
 - Find max similarity of any sentence *p* preceding *q* in *q*'s original document to *l*
- Average this for all q.

• Idea:

WASHINGTON

 Sentences with maximum similarity to sentences preceding those in Q should (similarly) come first.

- No preference if there are no sentences already in Q
- If precedence of u more than v, prefer u
- Otherwise prefer *v*

Precedence Expert

- Inverse of precedence
 - Calculate similarity of candidate with information that succeeds Q in original docs

 $PREF_{succ}(u,v,Q) = \begin{cases} 0. \\ 1 \end{cases}$

0.5
$$[Q = \varnothing] \lor [succ(u) = succ(v)]$$

1 $[Q \neq \varnothing] \land [succ(u) > succ(v)]$
0 otherwise

otherwise

Precedence Expert

Succession Expert

Learning Algorithm

- Use the same algorithm to find optimal weights as **Barzilay (2002)**
 - Namely, <u>Cohen et. al (1999)</u>
- Use model summaries to train
 - Learn optimal weights for experts given training data

Learned Weights

• Optimal learned weights:

Expert	Weight
Chronological	0.327947
Probabilistic	0.000039
Topical-closeness	0.016287
Precedent	0.196562
Succession	0.444102

Correlated scores of various approaches against human judgments

Method

Random Ordering

Probabilistic Ordering

Chronological Orderin

Proposed Method

- Probabilistic ordering is rubbish
- Chronological actually does pretty well
- Combined model with learned weights better than Chronological alone

WASHINGTON

Results

		Spearman
	(RO)	-0.267
	(PO)	0.062
ng	(CO)	0.774
	(LO)	0.783

Observations

- Nice ideas:
 - Combines multiple sources of ordering preferences
 - Weight-based integration
- Issues:
 - Sparseness everywhere
 - Ubiquitous word-level cosine similarity
 - Probabilistic models
 - Score handling

Entity-Based Ordering

Entity-Based Ordering Barzilay & Lapata (2005, 2008)

- Continuing to talk about same thing(s) lends cohesion to discourse
- Incorporated variously in discourse models
 - Lexical chains: Link mentions across sentences
 - Fewer lexical chain crossings → fewer shifts in topics
 - Salience hierarchies, information structure
 - Subject > Object > Indirect > Oblique ...
 - Centering model of Coreference
 - Combine grammatical role preference with
 - Preference for types of references/focus transitions

Entity-Based Ordering Barzilay & Lapata (2005, 2008)

• Idea:

- Leverage patterns of entity (re)mentions
- Intuition:
 - Capture local relations between sentences, entities
 - Model cohesion of evolving story

Entity-Based Ordering Barzilay & Lapata (2005, 2008)

• Pros:

- Largely delexicalized
 - Less sensitive to domain/topic than other models
- Can exploit state-of-the-art syntax, coreference tools

Entity Grid oss sentences of:

- Compact representation across sentences of:
 - Mentions
 - Grammatical Roles
 - Transitions

The Entity Grid Jovernment **Jepartmen** Microsoft Products Brands Case Netscape Software Tactics Competit Markets Evidence [rial 2 - - s o - - - s o o - - - 33

6

- Rows = sentences
- Columns = discourse entities
- Values = grammatical role of mention in sentence
 - (S)ubject
 - (O)bject
 - X (other)

WASHINGTON

- (no mention)
- Multiple mentions Take highest grammatical ranking (S > O > X)

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

Suit

	Department	Trial	Microsoft	Evidence	Competitors	Markets	Products	Brands	Case	Netscape	Software	Tactics	Government	Suit	Earnings	
1	S	0	S	X	0	_	_		_	_	_	_	_		_	1
2	—	_	0	_	—	X	S	0	_	—	_	_	_	_	—	2
3	_	_	S	0	_		_	_	S	0	0	_	_	_	_	3
4	—	_	S	—	—		_	_	_	_	_	S	_	_	_	4
5	_	_	_	_	_		_	_	_	_	_	_	S	0	_	5
6	_	X	S	_	_	_	_	_	_	_	_	_	_	_	0	6

- 2 competitive enough to unseat [established brands]o.
- 3 merging [browser software]o.
- 4 [Microsoft]s claims [its tactics]s are commonplace and good economically
- 5 [collusion] x is [a violation of the Sherman Act] o.
- [Microsoft]s continues to show [increased earnings]o despite [the trial]x. 6

WASHINGTON

[The Justice Department]s is conducting an [anti-trust trial]o against [Microsoft Corp.]x with [evidence]x that [the company]s is increasingly attempting to crush [competitors]o

[Microsoft]o is accused of trying to forcefully buy into [markets]x where [its own products]s are not

[The case]s revolves around [evidence]o of [Microsoft]s aggressively pressuring [Netscape]o into

[The government]s may file [a civil suit]o ruling that [conspiracy]s to curb [competition]o through

Intuitions

- Some columns dense: focus of text (e
 - Likely to take certain roles, e.g. S, O
- Others **sparse**: likely other roles(X)
- Local transitions reflect structure, topic
- local entity transitions: $\{S,O,X,-\}^n$
 - Continuous column subsequences ("role n-grams"?)
 - Compute probability of sequence over grid:
 - # of occurrences of that type/# of occurrences of that length

e.g. Microsoft)		Department	Trial	Microsoft	Evidence	Competitors	Markets	Products	Brands	Case	Netscape	Software	Tactics	Government	Suit
	1	S	0	S	X	0	_	-	_			_	_	_	_
	2	_	-	0	-	-	X	S	0	_	_	_	-	_	_
	3	_	-	S	0	-	_	-	_	S	0	0	-	_	_
c shifts	4		-	S	-	-	_	-	_		_	_	S	_	_
	5	_	-		-	-	_	-	_		_	_	_	S	0
	6	_	X	S	-	-	-	-	_	_	_	—	_	_	_

Vector Representation 0 0 0 .03 0 0 0 d_1 0 0 0 .02 0 .07 0 d_2 .02 0 0 .03 0 0 0 d_{3}

• Document vector:

- Length = # of transition types
- Values = Probabilities of each transition type
- Can vary by transition types
 - e.g. most frequent; all transition of some length, etc.

	\mathbf{v}	0	\mathbf{X}		\mathbf{V}	\bigcirc		I	
0	X	X	X	X	I	I		I	
.02	.07	0	0	.12	.02	.02	.05	.25	
.02	0	0	.06	.04	0	0	0	.36	
.06	0	0	0	.05	.03	.07	.07	.29	

