Content Realization: Linguistic Quality

Ling 573 Systems and Applications May 7, 2018

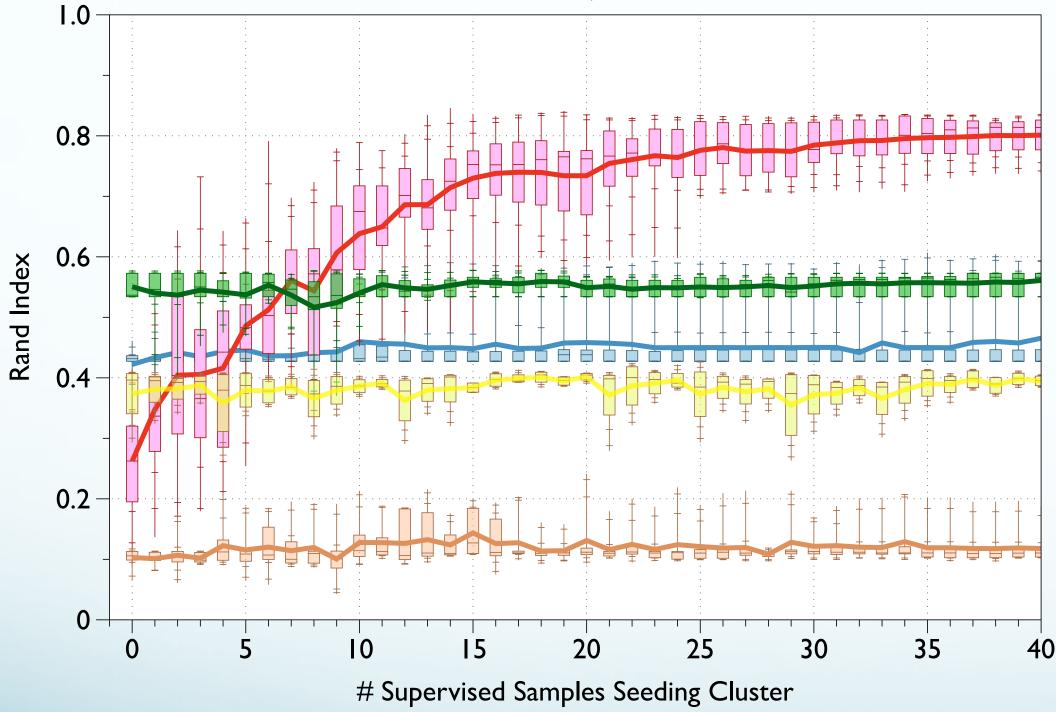
Begin Recording



Miscellanea

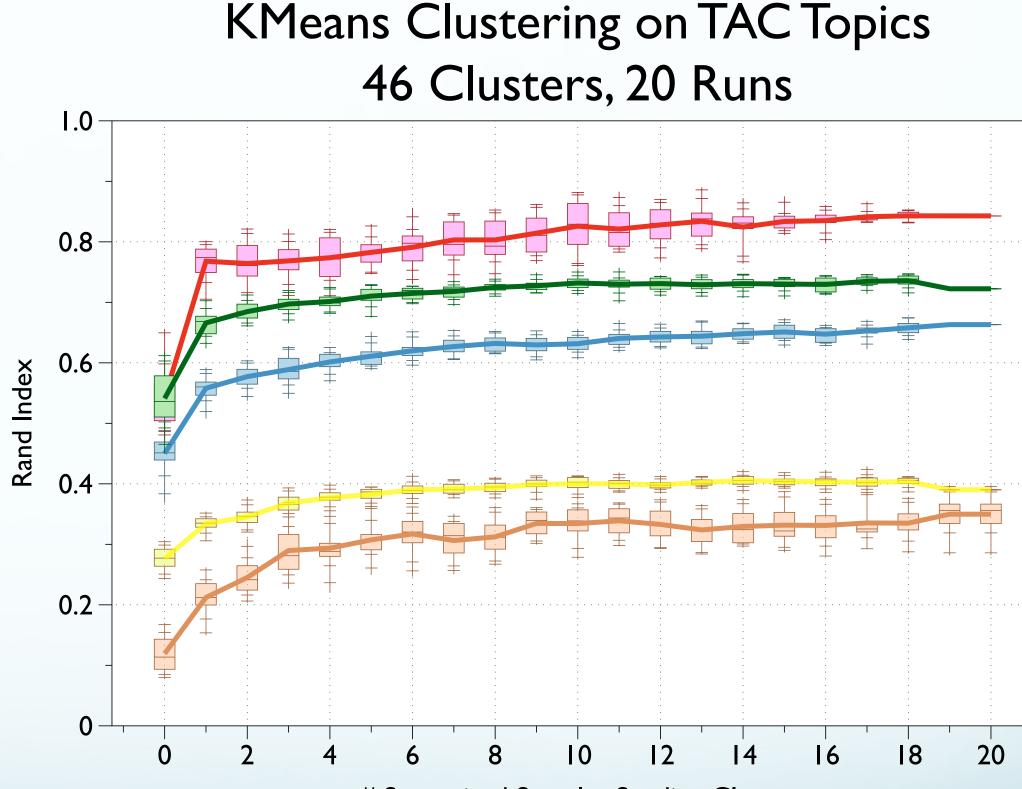
Semi-Supervised Clustering Revisited

KMeans Clustering on TAC Categories 5 Clusters, 20 Runs



WASHINGTON

= tf•idf via sklearn= GloVe via spacy



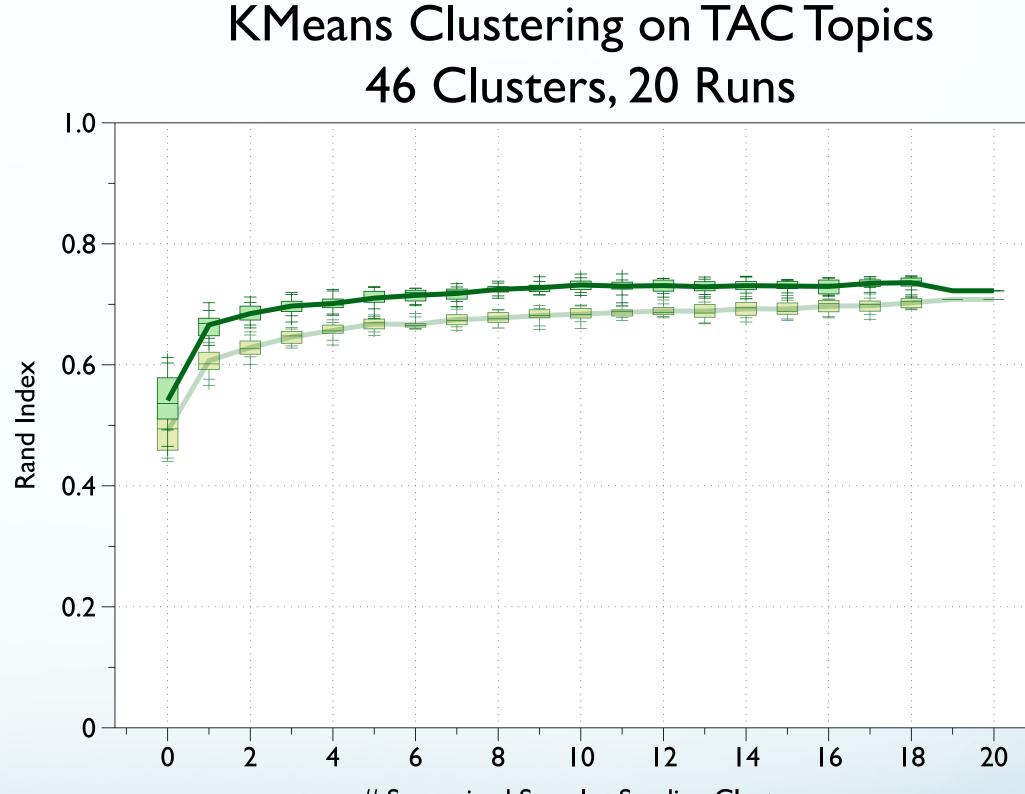
Supervised Samples Seeding Cluster

= Google News via gensim (100B words)

- = Doc2Vec on ENG-GW (~300M)
- = Word2Vec on ENG-GW (~30B)

Semi-Supervised Clustering Revisited

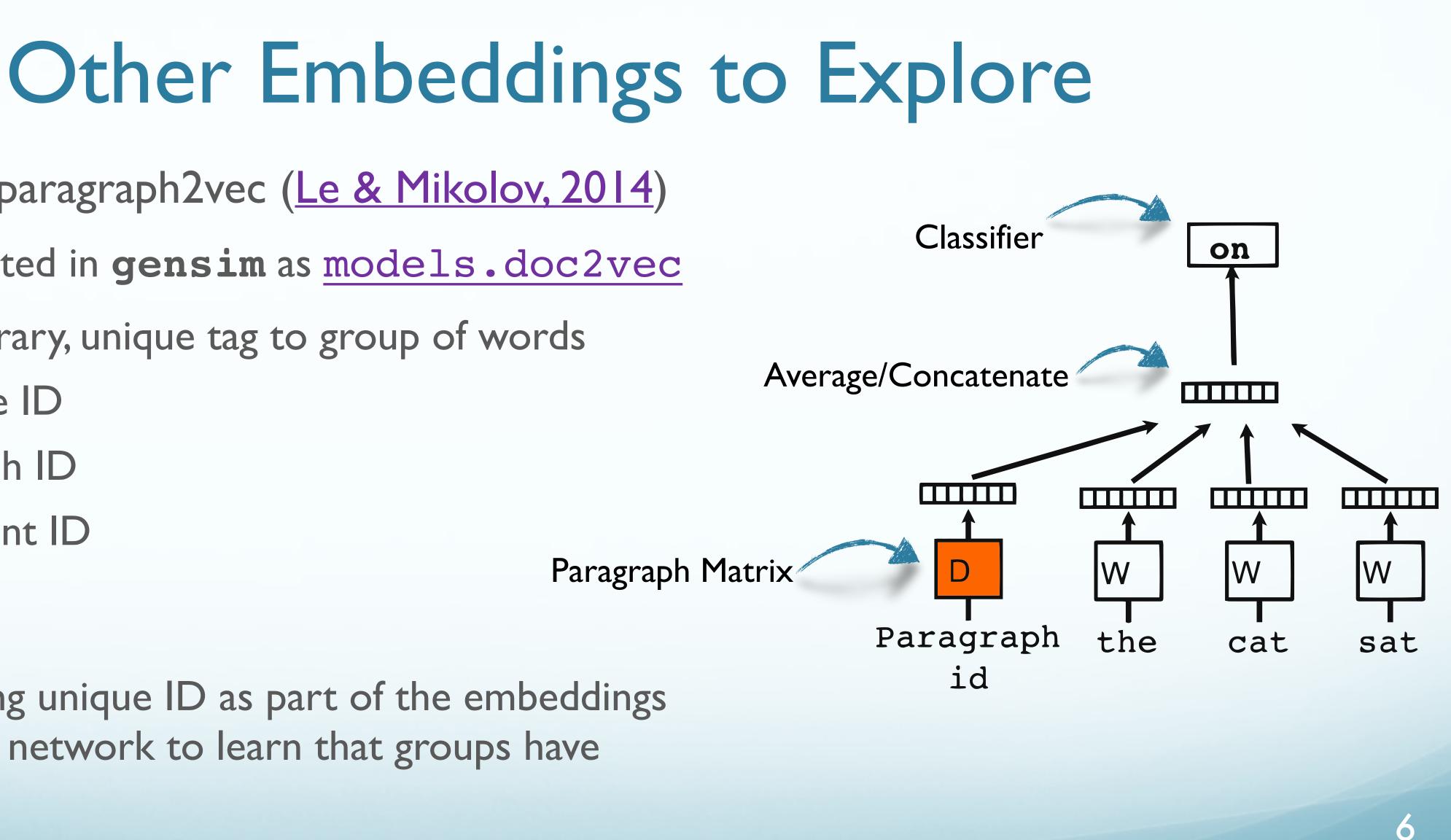
- Lower Line:
 - Iowercasing with Google News embeddings
 - ...they are not lowercased!



Supervised Samples Seeding Cluster

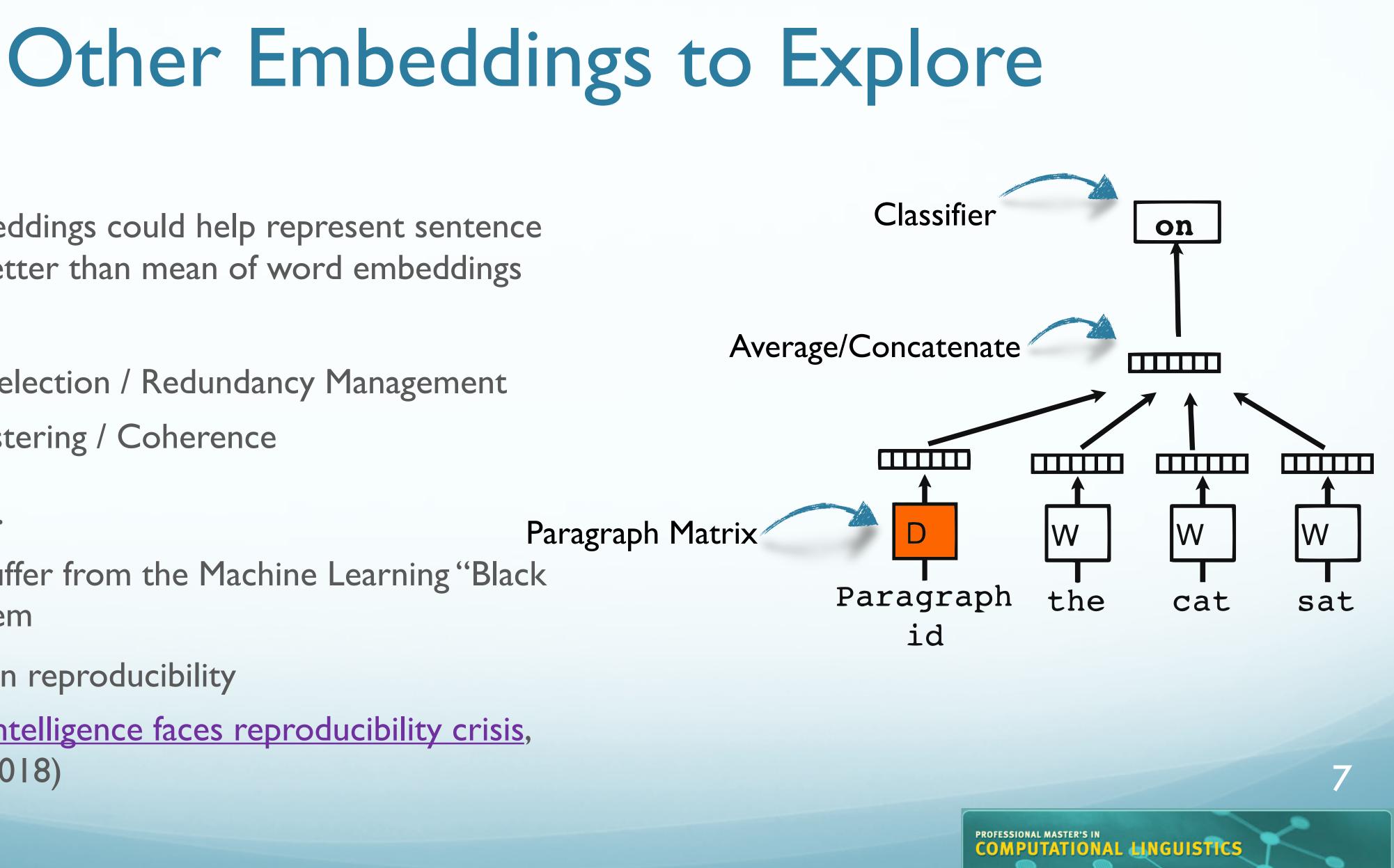
- doc2vec / paragraph2vec (<u>Le & Mikolov, 2014</u>)
 - Implemented in gensim as models.doc2vec
 - Add arbitrary, unique tag to group of words
 - Sentence ID
 - Paragraph ID
 - Document ID
- Main Idea:
 - Associating unique ID as part of the embeddings pressures network to learn that groups have topicality

WASHINGTON



- In theory:
 - These embeddings could help represent sentence similarity better than mean of word embeddings
 - Use for:
 - Content selection / Redundancy Management
 - Topic Clustering / Coherence
- In practice...
 - Seems to suffer from the Machine Learning "Black Box" problem
 - Difficulties in reproducibility
 - Artificial intelligence faces reproducibility crisis, Hutson (2018)

WASHINGTON



- I have placed Google news Word2Vec pre-trained vectors in:
 - /dropbox/17-18/573/other resources/word embeddings GoogleNews-vectors-negative300.bin.gz
 - Load with gensim.models.KeyedVectors.load(\$PATH, binary=True)
- You MUST use condor!
 - This model will take ~3.4GB when loaded into memory.

Other Resources

- - eng gw/eng gw lower
 - Icad with gensim.models.Word2Vec.load(\$PATH)
 - Lowercased (non-cased still running)

Other Resources

gensim Word2Vec embeddings trained on ENG GW (superset of AQUAINT-2)

/dropbox/17-18/573/other resources/word embeddings/eng gw

- Newsroom corpus (<u>Grusky et al, 2018</u>) (Webpage: <u>summari.es</u>)
 - Giant crawl of news stories
 - Use HTML <meta> tags written by humans as single-document summaries
 - /dropbox/17-18/573/other resources/newsroom
 - (As it becomes available)

Other Resources

Roadmap

- Content Realization in Summarization
 - Goals
 - Broad Approaches
- Readability and Linguistic Quality
 - Corpus study and analysis
 - Automatic Evaluation
 - Improvements for MDS

Goals of Content Realization: Abstractive Summaries

- Content selection works over concepts
- Need to produce important concepts in fluent NL

Goals of Content Realization: Extractive Summaries

- Draw from existing NL sentences
- Extreme compression e.g. 60 byte summaries (headlines)
- Maximize density of relevant information
 - Remove verbose, unnecessary, or redundant content
- Increase readability, fluency, linguistic quality
 - Present content from multiple docs, non-adjacent sentences

Broad Approaches: Abstractive Summaries

Complex Q-A

• Template-based methods

• More Desirable

- Full Natural Lnguage Generation (NLG)
- Concept-to-text

Broad Approaches: **Extractive Summaries**

Sentence compression

• Remove "unnecessary" phrases within sentences

Sentence reformulation

• Modify portions of sentence for coreference, readability, etc

Sentence fusion

Merge content from multiple sentences

Linguistic Quality



Shared Tasks

- Take content as primary evaluation measure
 - ROUGE, Pyramid, Responsiveness
 - Linguistic quality also part of formal evaluation
- Tac "readability"
 - Scored manually on five-point Likert scale
 - Aims to capture readability, fluency
 - Independent of summary content

- Grammaticality:
 - No fragments, datelines, ill-formed sentences, etc.
- Non-redundancy
- Referential clarity
 - Both presence/salience of antecedents, relevance of items
- Focus
 - Only content related to summary

• Coherence: "Well-structured"

WASHINGTON

What is "Readability?"

• No unnecessary repetition: includes content, sentences, or full NPs when pronoun is better

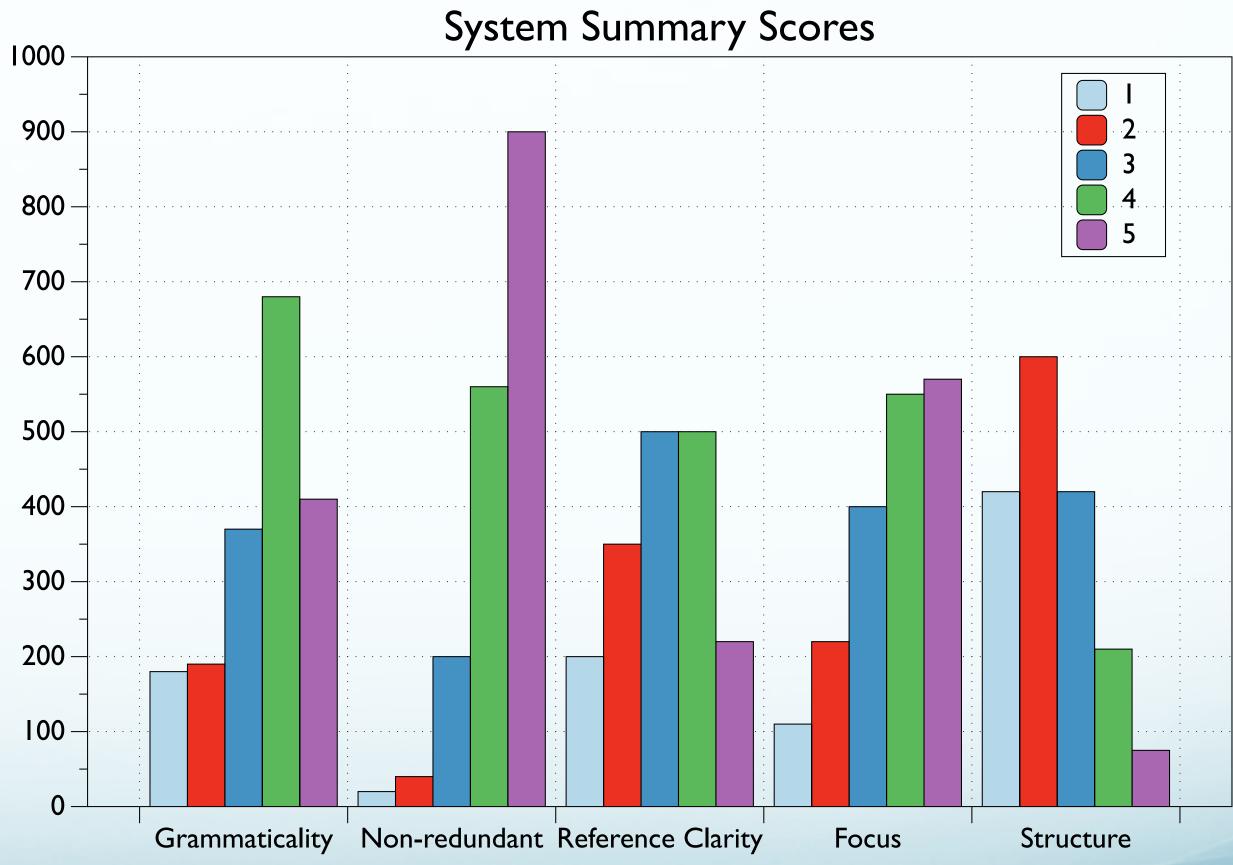
Score Distributions

• DUC 2006 results:

Of Summaries

200

100



- Definition subsumes many phenomena
- What types of errors do these systems make?
- What errors, issues, are reflected in the scores?
- LQVSumm (Friedrich et al, 2014)
 - Annotate linguistic "violations" in automatic summaries
 - TAC2011 data: ~2000 peer summaries
 - Categorize and tabulate
 - Assess correlation with Readability scores

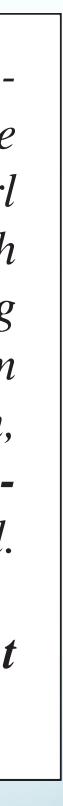
What is "Readability"

Example

- "the girls" + "the Amish School"
 - Missing entity introduction
- "Miller" said
 - Needs explanation
- "The gunman, a local truck driver..."
 - Already introduced

Charles Carl Roberts IV may have planned to molest the girls at the Amish school, but police have no evidence that he actually did. Charles Carl Roberts IV entered the West Nickel Mines Amish School in Lancaster County and shot 10 girls, killing five. The suspect apparently called his wife from a cell phone shortly before the shooting began, saying he was "acting out in revenge for something that happened 20 years ago, <u>Miller</u> said. The gunman, a local truck driver Charles Roberts, was apparently acting in "revenge" for an incident that happened to him 20 years ago.

Friedrich et al, 2014, p. 1591, Fig. 1



• Entity Mentions

• Affect coreference and readability

FM EXPL SM+EXPL DNP REF INP+REF PRN+MISSA PRN+MISSLA ACR EXPL

First mention without explanation Subsequent mention with explanation Definite NP without previous mention Indefinite NP with previous mention Pronoun with missing antecedent Pronoun with misleading antecedent Acronym without explanation

Violation Categories

Violation Categories

Clausal level

• Arbitrary spans — up to sentence level

INCOMPLSN INCLDATE OTHRUNGR NOSEMREL NODISREL REDUNINF

Incomplete sentence Included dateline info Other ungrammatical No semantic relation between sentences Discourse relation doesn't fit Redundant information

COMPUS	G-Flow		TAC				
corpus	50 documents		1,935 document				
violation type	ion type count avg/doc count avg/doc		avaldoc	Pearson's r			
violation type	count	avg/doc	count	avg/uoc	Readability	Pyramid	Respons.
entity level violations							
DNP-REF	3	0.06	958	0.50	-0.122	-0.166	-0.133
FM-EXPL	6	0.12	792	0.41	0.006	-0.050	-0.066
INP+REF	1	0.02	430	0.22	-0.052	0.235	0.109
PRN+MISSA	2	0.04	361	0.19	-0.191	-0.140	-0.156
SM+EXPL	1	0.02	162	0.08	0.020	0.089	0.045
PRN+MISLA	0	0.00	27	0.01	-0.065	-0.073	-0.089
ACR-EXPL	3	0.04	11	0.01	-0.038	-0.056	-0.006
sum(DNP-REF, PRN+MISSA)	5	0.1	1319	0.68	-0.204	-0.208	-0.192
sum(entity level violations)	15	0.03	2741	1.42	-0.167	-0.074	-0.127
clause level violations							
INCOMPLSN	0	0.00	1,044	0.54	-0.210	0.000	-0.029
OTHRUNGR	3	0.06	793	0.41	-0.180	0.007	-0.016
INCLDATE	3	0.06	412	0.21	-0.090	0.039	0.051
REDUNDINF	3	0.06	504	0.26	-0.160	0.156	0.077
NOSEMREL	0	0.00	142	0.07	-0.148	-0.102	-0.132
NODISREL	1	0.02	91	0.05	-0.025	-0.081	-0.062
misleading discourse							
connectives*	1	0.02	114	0.06	-	-	-
sum(clause level violations)	10	0.2	2,986	1.54	-0.325	0.041	-0.016
sum(clause level violations,							
DNP-REF, PRN+MISSA)	15	0.3	4,305	2.22	-0.385	-0.084	-0.122
sum(all violations)	25	0.5	5,727	2.96	-0.356	-0.022	-0.101

WASHINGTON

	FAC	
_	1	

- Counts of annotations of coherence violations
- Correlation between violations and evaluation scores

Further Analysis

- Most significant factors:
 - Missing/Misleading references
 - fragments
 - redundant content
 - poor coherence
- Total # of errors well-correlated with system ranks

• Train linear regression to model relationship of particular errors to readability

Feature	Weight	Feature	Weight
Intercept	3.407	DNP-REF	-0.157
ACR-EXPL	-0.361	OTHRUNGR	-0.155
PRN+MISLA	-0.355	INCLDATE	-0.151
INCOMPLSN	-0.275	INP+REF	-0.067
NOSEMREL	-0.262	NODISREL	-0.046
REDUNDINF	-0.259	FM-EXPL	-0.023
PRN+MISSA	-0.236	SM+EXPL	0.038

Linear model weights Friedrich et al, 2014, p. 1596, Tab. 3

Automatic Evaluation of Linguistic Quality

- Motivation
 - No focus on linguistic quality because no way to tune to it
 - Everyone uses ROUGE because you can tune
 - Explicitly tuned in many ML models
- Alternative strategies:
 - Micro Learn to predict component scores
 - Macro Learn to predict overall readability score

Intuitively: error count (LQVSumm) predicts well... but Errors manually derived

LQVSumm on Patas

• /dropbox/17-18/573/other_resources/LQVSumm

"Micro" Quality Prediction

Micro-Quality Prediction

- <u>Pitler et al, 2010</u> via SVM Ranking
- Big Idea:
 - Train SVM classifier to compare whether one system is better than another
 - Use SVM to rank different system outputs

Language Quality Prediction Features Discursive

• Continuity:

WASHINGTON

- For each cohesive device, are sentences adjacent in source?
- Position and confidence of antecedents of pronouns
- Max, min, and average cosine similarity between sentences

• Sentence fluency

- Shallow syntax features correlated w/MT quality
- <u>Coh-Metrix</u> (Online tool)
 - Set of psycholoinguistically-based coherence features + LSA similarity

Language Quality Prediction Features Discursive

- Word coherence
 - cross-sentence word coocurrence patterns
- Entity coherence
 - via Entity-grids (Brown toolkit)

Language Quality Prediction Features Syntactic

- General word choice, sequence
 - Language Models
- Named Entities
 - Modifiers for Ist mention of PERSON
 - Proportion of summary NER first mentions originall non-first
- NP syntax
 - POS, phrase tags in NPs

Language Quality Prediction Features Syntactic

- Local coherence devices counts:
 - demonstratives
 - pronouns
 - definite descriptions
 - sentence initial discourse connectives

Results

System-level prediction accuracies

Feature set	Gram.	Redun.	Ref.	Focus	Struct.
Lang. models	87.6	83.0	91.2	85.2	86.3
Named ent.	78.5	83.6	82.1	74.0	69.6
NP syntax	85.0	83.8	87.0	76.6	79.2
Coh. devices	82.1	79.5	82.7	82.3	83.7
Continuity	88.8	88.5	92.9	89.2	91.4
Sent. fluency	91.7	78.9	87.6	82.3	84.9
Coh-Metrix	87.2	86.0	88.6	83.9	86.3
Word coh.	81.7	76.0	87.8	81.7	79.0
Entity coh.	90.2	88.1	89.6	85.0	87.1
Meta ranker	92.9	87.9	91.9	87.8	90.0

WASHINGTON

Input-level prediction accuracies

Feature set	Gram.	Redun.	Ref.	Focus	Stı
Lang. models	66.3	57.6	62.2	60.5	6
Named ent.	52.9	54.4	60.0	54.1	52
NP Syntax	59.0	50.8	59.1	54.5	5
Coh. devices	56.8	54.4	55.2	52.7	5
Continuity	61.7	62.5	69.7	65.4	7
Sent. fluency	69.4	52.5	64.4	61.9	6
Coh-Metrix	65.5	67.6	67.9	63.0	6
Word coh.	54.7	55.5	53.3	53.2	5
Entity coh.	61.3	62.0	64.3	64.2	6
Meta ranker	71.0	68.6	73.1	67.4	7

Pitler et al, 2010 p. 550–551; Tab 2–3

Findings

- Overall accuracies quite good
 - ~70% on ranking, 90% pairwise
- Systems overall easier to rank than particular input
- **Continuity** related features best across components
 - Ensemble of ordering, coreference, cosine similarity cues
- Specifically tuned fluency scorer works on fluency

"Macro" Quality Prediction

Macro-Quality Prediction Lin et al, (2012)

- High-level concept:
 - Discourse version of entity grid
 - Columns; entities (same head)
 - Rows: sentences
 - Cell values: PDTB Discourse Relation.Arg# tuples

• Use linear programming to find optimal fit to discourse relations between sentences



Macro-Quality Prediction Lin et al, (2012)

Variants:

- Inter-cell sequence frequencies
 - + Additional tuples:
 - Add "Explitic" / "Non-Explicit" tags to relation tuple
 - + Intra-cell bigrams
 - (Like "Role n-grams" from SOX paradigm)

S₁: Japan normally depends heavily on the Highland Valley and Cananea mines as well as the Bougainville mine in Papua New Guinea

S2: Recently, Japan has been buying copper elsewhere.

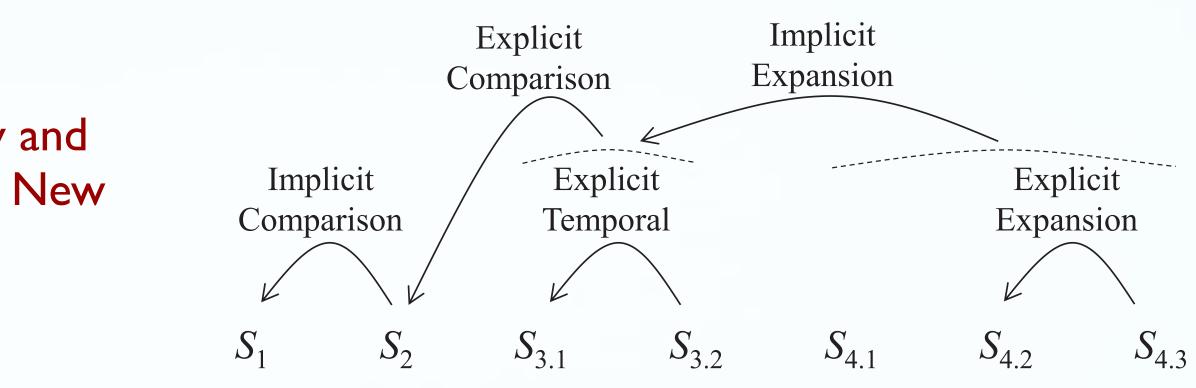
 $S_{3,1}$: But as Highland Valley and Cananea begin operating, $S_{3,2}$: they are expected to resume their roles as Japan's

suppliers.

 $S_{4.1}$: According to Fred Demier, metals economist for DBL, New York,

S_{4.2}: "Highland Valley has already started operating

S_{4.3}: and Cananea is expected to do so soon.



S _	Terms					
#	copper	cananea	operat	depend		
SI		Comp.Arg1		Comp.Arg		
S ₂	Comp.Arg2 Comp.Arg1					
S ₃		Comp.Arg2 Temp.Arg1 Exp.Arg1	Comp.Arg2 Temp.Arg1 Exp.Arg1			
S ₄		Exp.Arg2	Exp.Arg1 Exp.Arg2			

Lin et al, (2012) p. 1010; Fig 1,2; Tab 2

Results

- Very strong correlations with manual readability score
- Beats prior predictors

Measure

ROUGE-2

TAC System 6

DiscRelGrid

DiscRelGrid +Explicit Tags + Within Cell Transcriptions

Pearson	Spearman
0.7524	0.3975
0.8194	0.4837
0.8556	0.6593
0.8666	0.7122

