Syntax: Context-Free Grammars

LING 571 — Deep Processing Techniques for NLP
Oct 1, 2018
Ryan Georgi

Announcements

- Don't worry about Canvas renaming your files with -1, -2, etc.
- HW #I Due Tonight, I I:00PM

Commandline Arguments in Bash & Python

- When we say "don't hardcode," two solutions:
 - sys.argv or argparse in Python (links go to tutorials)
 - \$1,\$2, or \$@ in bash

- Helpful commands: obtaining the directory containing a script:
 - dirname \$0 [bash]
 - os.path.dirname(__file__) [python]

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

Constituency

Some examples of noun phrases (NPs):

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

- How do we know that these are constituents?
 - We can perform constituent tests

Constituent Tests

- Many types of tests for constituency (see Sag, Wasow, Bender [2003], pp. 29-33)
- One type (for English) is clefting
 - It is _____ that _____
 - Is the resulting sentence valid English?

It is the Supreme Court that made the ruling

It is the Supreme Court of the United States that made the ruling

It is **they** that made the ruling

It is the Supreme Court of that made the ruling

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

Representation: Context-free Grammars

- CFGs: 4-tuple (Σ,N,P,S)
 - A set of terminal symbols: Σ
 - A set of nonterminal symbols: N
 - A set of productions *P*:
 - of the form $A \rightarrow a$
 - Where A is a non-terminal and $a \in \{\Sigma \cup N\}^*$
 - A start symbol $S \in N$

CFG Components

Productions:

- One non-terminal on LHS and any number of terminals and non-terminals on RHS
 - $S \rightarrow NP VP$
 - $VP \rightarrow VNPPP \mid VNP$
 - Nominal → Noun | Nominal Noun
 - Noun → 'dog' | 'cat' | 'rat'
 - $Det \rightarrow$ 'the'

Grammar Rules Examples

NP VPSI + want a morning flight NPPronounProper-NounLos Angeles Det Nominal a + flight NominalNominal Noun morning + flight Nounflights VPVerbdo Verb NP want + a flight Verb NP PP leave + Boston + in the morning Verb PP leaving PPPreposition NP from + Los Angeles

Jurafsky & Martin, Speech and Language Processing, p.390

Parse Tree

Some English Grammar

- Sentences: Full sentence or clause; a complete thought
- ullet Declarative: $S o NP \ VP$
 - NP want a flight from SeaTac to Denver. VP
- ullet Imperative: S o VP
 - lacksquare Show me the cheapest flight from New York to Los Angeles. VP
- ullet Yes-no Question: $S o Aux \ NP \ VP$
 - $\left[\text{Can }_{\text{Aux}} \right] \left[\text{you }_{\text{NP}} \right] \left[\text{give me the nonstop flights to Boston? }_{\text{VP}} \right]$
- ullet Wh-subject question: S o Wh-NP VP
 - [Which flights Wh-NP] [arrive in Pittsburgh before 10pm? VP]
- ullet Wh-non-subject question: S o Wh-NP Aux NP VP
- [What flights Wh-NP] [do Aux] [you NP] [have from Seattle to Orlando? VP]

The Noun Phrase

Noun phrase constituents can take a range of different forms:

Harry the Horse a magazine

water twenty-three alligators

Ram's homework the last page of Ram's homework's

We'll examine a few ways these differ

The Determiner

- Determiners provide referential information about an NP
- Often position the NP within the current discourse

a stop	the flights	this flight
those flights	any flights	some flights

• Can more explicitly introduce an entity as part of the specifier

United's flight
United's pilot's union
Denver's mayor's mother's canceled flight

The Determiner

- $Det \rightarrow DT$
 - 'the', 'this', 'a', 'those'
- $Det \rightarrow NP$'s
 - "United's flight": [[United NP] 's Det] flight
 - "Chicago's airport": [[Chicago NP] 's Det] airport

The Nominal

- Nominals contain pre- and post-head noun modifiers
 - Occurs after the determiner (in English)
- Can exist as just a bare noun:
 - Nominal → Noun
 - PTB POS: NN, NNS, NNP, NNPS
 - 'flight', 'dinner', 'airport', 'Chicago Midway'

Pre-nominal modifiers ("Postdeterminers")

- Occur before the head noun in a nominal
- Can be any combination of:
 - Cardinal numbers (e.g. one, fifteen)
 - Ordinal numbers (e.g. first, thirty-second)
 - Quantifiers (e.g. some, a few)
 - Adjective phrases (e.g. longest, non-stop)

Postmodifiers

- Occur after the head noun
- In English, most common are: (a flight...)
 - Prepositional phrase (e.g. ... from Cleveland)
 - non-finite clause (e.g. ... arriving after eleven a.m.)
 - relative clause (e.g. ... that serves breakfast)

Combining Everything

- $NP \rightarrow (Det) Nom$
- $Nom \rightarrow (Card) (Ord) (Quant) (AP) Nom$
- $Nom \rightarrow Nom PP$
 - The least expensive fare
 - one flight
 - the first route
 - the last flight from Chicago

Before the Noun Phrase

- "Predeterminers" can "scope" noun phrases
 - e.g. 'all,'
 - "all the morning flights from Denver to Tampa"

A Complex Example

• "all the morning flights from Denver to Tampa"

Verb Phrases and Subcategorization

With this grammar:

- This grammar licenses the following correctly:
 - The teacher handed the student a book
- And the following incorrectly:
 - *The teacher handed the student
 - *The teacher handed a book
 - *The teacher handed

Verb Phrases and Subcategorization

With this grammar:

- It also licenses
 - *The teacher handed a book the student

• This is problematic for semantic reasons, which we'll cover later.

Verb Phrase and Subcategorization

- Verb phrases include a verb and optionally other constituents
- Subcategorization frame
 - what constituent arguments the verb requires

CFGs and Subcategorization

- Issues?
 - ullet "I prefer United has a flight." (o S)
 - "I prefer a window seat." (ightarrow NP)
- How can we solve this problem?
 - Create explicit subclasses of verb
 - Verb-with- $NP \rightarrow ...$
 - $Verb\text{-}with\text{-}S\text{-}complement \rightarrow \dots$
 - Is this a good solution?
 - No, explosive increase in number of rules
 - Similar problem with agreement (NN↔ADJ↔PRON↔VB)

CFGs and Subcategorization

- Better solution:
 - Feature structures:
 - Further nested information
 - a.k.a → Deeper analysis!
 - Will get to this toward end of the month

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

Grammars... So What?

- Grammars propose a formal way to make distinctions in syntax
- Distinctions in syntax can help us get a hold on distinctions in meaning

Syntax to the Rescue!

h/t to Amandalynne Paullada

- Possible Interpretations:
 - A. Two audience members, who happened to be Canadian Citizens, were questioned
 - B. Two audience members, when questioned, behaved Canadian-ly

Grammars Promote Deeper Analysis

- Shallow techniques useful, but limited
 - "Supreme Court of the United States"
 - ADJ NN IN DET NNP NNP
 - What does this tell us about the fragment?
- VS.

Grammars Promote Deeper Analysis

- Meaning implicit in this analysis tree:
 - "The United States" is an entity
 - The court is specific to the US
- Inferable from this tree:
 - "The United States" is an entity that can possess (grammatically) other institutions

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

Treebanks

- Instead of writing out grammars by hand, could we learn them from data?
- Large corpus of sentences
- All sentences annotated syntactically with a parse
- Built semi-automatically
 - Automatically parsed, manually corrected

Penn Treebank

- A well-established and large treebank
- English:
 - Brown Univ. Standard Corp. of Present-Day Am. Eng.
 - Switchboard (conversational speech)
 - ATIS (human-computer dialog, Airline bookings)
 - Wall Street Journal
- Chinese:
 - Xinhua, Sinoarma (newswire)
- Arabic
 - Newswire, Broadcast News + Conversation, Web Text...

Other Treebanks

- DeepBank (HPSG)
- Prague Dependency Treebank (Czech: Morphologically rich)
- Universal Dependency Treebank (60 languages, reduced POS tags)

Treebanks

- Include wealth of language information
 - Traces (for movement analyses)
 - Grammatical function (subject, topic, etc)
 - Semantic function (temporal, location)
- Implicitly constitute grammar of language
 - Can read off rewrite rules from bracketing
 - Not only presence of rules, but frequency counts
 - Will be crucial in building statistical parsers

Treebank VVSJ Example

```
(S (''')
  (S-TPC-2)
   (NP-SBJ-1 (PRP We))
   (VP (MD would)
     (VP (VB have)
         (S
           (NP-SBJ (-NONE- *-1))
           (VP (TO to)
                (VP (VB wait)
                     (SBAR-TMP (IN until))
                     (NP-SBJ (PRP we))
                     (VP (VBP have)
                       (VP (VBN collected)
                         (PP-CLR (IN on)
                            (NP (DT those) (NNS assets))))))))))
  (, ,) (''')
   (NP-SBJ (PRP he))
   (VP (VBD said)
     (S (-NONE- *T*-2)))
  (...)
```


Treebank VVSJ Example

Treebanks & Corpora on Patas

patas\$ ls /corpora

birkbeck coconut

Communicator2000_Emotion

ComParE

Conll

delph-in

DUC

ELRA

enron_email_dataset

europarl

europarl-old

framenet

freebase

grammars

HathiTrust

ICAME

ICSI

JRC-Acquis.3.0

LDC

LEAP

lemur

levow

mdsd-2.0

med-data

nltk

OANC

opt

private

proj-gutenberg

reuters

scope

tc-wikipedia

TREC

treebanks

UIC

UWCL

UWCSE

Treebanks & Corpora on Patas

- Many large corpora from LDC, such as the Penn Treebank v3:
 - /corpora/LDC/LDC99T42/
 - Find the full LDC corpora catalog online: catalog.ldc.upenn.edu
- Many corpus samples in NLTK
 - /corpora/nltk/nltk-data

Treebank Issues

- Large, expensive to produce
- Complex
 - Agreement among annotators can be an issue
- Labeling implicitly captures bias in theory
 - Penn Treebank is "bushy," long productions
- Enormous numbers of rules
 - 4,500 rules in PTB for VP alone
 - IM rule tokens; 17,500 distinct types and counting!

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

Spoken vs. Written

- Can we just use models for written language directly?
- NO!
- Challenges of spoken language:
 - Disfluency
 - Can I um uh can I g— get a flight to Boston on the fifteenth?
 - Short, fragmentary
 - Uh one way
 - Only 37% of Switchboard utterances > 2 words
 - More pronouns, ellipsis
 - That one

Computational Parsing

- Given a grammar, how can we derive the analysis of an input sentence?
 - Parsing as search
 - CKY parsing
- Given a body of (annotated) text, how can we derive the grammar rules of a language, and employ them in automatic parsing?
 - Treebanks & PCFGs

Roadmap

- Constituency
- Context-free grammars (CFGs)
- English Grammar Rules
- Grammars Revisiting our Motivation
- Treebanks
- Speech and Text
- Parsing

What is Parsing?

- CFG parsing is the task of assigning trees to input strings
 - ullet For any input A and grammar G
 - ...assign ≥ 0 parse trees T that represent its syntactic structure, and...
 - ullet Cover all and only the elements of A
 - ullet Have, as root, the start symbol S of G
 - ...do not necessarily pick one single (or correct) analysis
- Subtask: Recognition
 - Given input A, G is A in language defined by G or not?

Motivation

- Is this sentence in the language i.e. is it "grammatical?"
 - I prefer United has the earliest flight.
 - FSAs accept regular languages defined by automaton.
 - Parsers accept languages defined by CFG.
- What is the syntactic structure of this sentence?
 - What airline has the cheapest flight?
 - What airport does Southwest fly from near Boston?
 - Syntactic parse provides framework for semantic analysis?
 - What is the subject? Direct object?

Parsing as Search

- Syntactic parsing searches through possible trees to find one or more trees that derive input
- Formally, search problems are defined by:
 - ullet Start state S
 - Goal state G
 - Set of actions that transition from one state to another
 - "Successor function"
 - A path cost function

Parsing as Search: One Model

- Start State S: Start Symbol
- Goal test:
 - Does the parse tree cover all of, and only, the input?
- Successor function:
 - Expand a nonterminal using a production where nonterminal is the LHS of the production
- Path cost:
 - ...ignored for now.

Parsing as Search: One Model

- Node:
 - Partial solution to search problem (partial parse)
- Search start node (initial state):
 - Input string
 - Start symbol of CFG
- Goal node:
 - ullet Full parse tree: covering all of, and only the input, rooted at S

Search Algorithms

- Depth First
 - Keep expanding nonterminals until they reach words
 - If no more expansions available, back up
- Breadth First
 - Consider all parses that expand a single nonterminal...
 - ...then all with two expanded, etc...
- Other alternatives, if have associated path costs.

Parse Search Strategies

- Two constraints on parsing:
 - Must start with the start symbol
 - Must cover exactly the input string
- Correspond to main parsing search strategies
 - Top-down search (Goal-directed)
 - Bottom-up search (Data-driven search)

A Grammar

Grammar	Lexicon
$S \to NP VP$	$Det \rightarrow that \mid this \mid a$
$S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \to VP$	$Verb \rightarrow book \mid include \mid prefer$
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$Proper-Noun ightarrow Houston \mid NWA$
$NP \rightarrow Det\ Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition \rightarrow from \mid to \mid on \mid near \mid through$
$Nominal \rightarrow Nominal \ Noun$	
$Nominal \rightarrow Nominal \ PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	

 $VP \rightarrow VP PP$

 $PP \rightarrow Preposition NP$

54

PROFESSIONAL MASTER'S IN
COMPUTATIONAL LINGUISTICS

Top-down Search

- All valid parse trees must be rooted with start symbol
- Begin search with productions where S is on LHS
 - ullet e.g. S o NP VP
- Successively expand nonterminals
 - e.g. $NP \rightarrow Det\ Nominal;\ VP \rightarrow V\ NP$
- Terminate when all leaves are terminals

Depth-First Search

Breadth-First Search

Pros and Cons of Top-down Parsing

Pros:

- Doesn't explore trees not rooted at S
- Doesn't explore subtrees that don't fit valid trees

Cons:

- Produces trees that may not match input
- May not terminate in presence of recursive rules
- May rederive subtrees as part of search

Bottom-Up Parsing

- Try to find all trees that span the input
 - Start with input string
 - Book that flight
- Use all productions with current subtree(s) on RHS
 - ullet e.g. $N o \mathrm{Book};\ V o \mathrm{Book}$
- Stop when spanned by S, or no more rules apply

Book that flight

Book that flight

Pros and Cons of Bottom-Up Search

Pros:

- Will not explore trees that don't match input
- Recursive rules less problematic
- Useful for incremental/fragment parsing

Cons:

Explore subtrees that will not fit full input

Cross-Serial Dependencies, Revisited

$$L' = ambncmdn$$

```
dat ik<sub>1</sub> Henk<sub>2</sub> haar<sub>3</sub> de nijlpaarden<sub>3</sub> zag<sub>1</sub> helpen<sub>2</sub> voeren<sub>3</sub> that I<sub>1</sub> Henk<sub>2</sub> her<sub>3</sub> the hippos saw<sub>1</sub> help<sub>2</sub> feed<sub>3</sub> "...that I saw Henk help her feed the hippos"
```

A Dutch example from Rentier (1994)

