
CKY Parsing & CNF Conversion
LING 571 — Deep Processing Techniques for NLP

October 3, 2018
Ryan Georgi

�1

Announcements
● HW #2 will be extended to Monday, 11/8 at 11:00pm.

● Then we will be caught up, so HW #3 will still be due that Friday.

● If you want to use python3.6 on Patas:

● /opt/python-3.6/bin/python3

● nltk is installed.

�2

Type Hinting in Python
● Supported in ≥3.6 [tutorial]  
 
from typing import List  
from nltk.grammar import Production  
 
def fix_hybrid_production(hybrid_prod: Production) -> List[Production]:  
 …

● Also available in PyCharm through docstrings and/or comments:  
 
def fix_hybrid_productions(hybrid_prod):  
 “””  
 This function takes a hybrid production and  
 returns a list of new CNF productions  
 :type hybrid_prod: Production  
 :rtype: list[Production]  
 “””

�3

https://medium.com/@ageitgey/learn-how-to-use-static-type-checking-in-python-3-6-in-10-minutes-12c86d72677b
https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

�4

Recap: Parsing as Search

�5

S

S

NP VP

S

NP VPAux

S

VP

S

VP

S

VP

S

NP VPAux

S

NP VPAux

Det Nom PropN V NP V

S

NP VP

PropN

S

NP VP

Det Nom

None of these nodes can produce book as first terminal

�6
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Nominal Nominal

Book that flight

Verb Det Noun

Nominal

Book that flight

Noun Det Noun

Nominal Nominal

NP

Book that flight

Verb Det Noun

NominalVP

Book that flight

Verb Det Noun

Nominal

NP

Book that flight

Verb Det Noun

Nominal

NP

VP

Book that flight

Verb Det Noun

Nominal

NP

VP

None of these nodes lead
lead to a RHS that can be  

combined with S on the LHS.

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm
�7

Parsing Ambiguity
● Lexical Ambiguity:

● Book/NN → I left a book on the table.

● Book/VB → Book that flight.

● Structural Ambiguity

�8

Attachment Ambiguity
“One morning, I shot an elephant in my pajamas.
How he got into my pajamas, I’ll never know.” — Groucho Marx

�9

Attachment Ambiguity

�10

S

NP

Pronoun

I

VP

Verb

shot

NP

Det

an

Nominal

Nominal

Noun

elephant

PP

in my pajamas

S

NP

Pronoun

I

VP

VP

Verb

shot

NP

Det

an

Nominal

Nominal

Noun

elephant

PP

in my pajamas

“We saw the Eiffel Tower flying to Paris”

�11

Coordination Ambiguity:

�12

NP

JJ

old

NNS

NNS

men

CONJ

and

NNS

women

NP

NP

JJ

old

NNS

men

CONJ

and

NP

women

[old men] and [women] [old [men and women]]
(Only the men are old) (Both the men and women are old)

“old men and women”

Local vs. Global Ambiguity
● Local ambiguity:

● Ambiguity that cannot contribute to a full, valid parse

● e.g. Book/NN in “Book that flight”

● Global ambiguity

● Multiple valid parses

�13

Why is Ambiguity a Problem?
● Local ambiguity:

● increased processing time

● Global ambiguity:

● Would like to yield only “reasonable” parses

● Ideally, the one that was intended*

�14

Solution to Ambiguity?
●Disambiguation!
● Different possible strategies to select correct interpretation:

�15

● Some prepositional structs more likely to attach high/low

● John was thought to have been seen by Mary

● Mary could be doing the seeing or thinking — seeing more likely

Disambiguation Strategy:  
Statistical

�16

VP

... V

thought

VP

to have been seen

PP

by Mary

VP

... V

thought

VP

IP

to have been

VP

V

seen

PP

by Mary

● Some phrases more likely overall

● [old [men and women]] is a more common construction than [old men] and [women]

Disambiguation Strategy:  
Statistical

�17

NP

JJ

old

NNS

NNS

men

CONJ

and

NNS

women

NP

NP

JJ

old

NNS

men

CONJ

and

NP

women
>

Disambiguation Strategy:  
Semantic

● Some interpretations we know to be semantically impossible

● Eiffel tower as subject of fly

�18

Disambiguation Strategy:  
Pragmatic

● Some interpretations are possible, unlikely given world knowledge

● e.g. elephants and pajamas

�19

Disambiguation Strategy:  

!
● Alternatively, keep all parses

● (Might even be the appropriate action for some jokes)

�20

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm
�21

Repeated Work
● Search (top-down/bottom-up) both lead to repeated substructures

● Globally bad parses can construct good subtrees

● …will reconstruct along another branch

● No static backtracking can avoid

● Efficient parsing techniques require storage of partial solutions

● Example: a flight from Indianapolis to Houston on TWA

�22

Shared Sub-Problems

�23

NP

Det

a

Nominal

Noun

flight…

Shared Sub-Problems

�24

NP

Det

a

Nominal

Nominal

Noun

flight

PP

from Indianapolis…

NP

Det

a

Nominal

Nominal

Nominal

Noun

flight

PP

from Indianapolis

PP

to Houston…

Shared Sub-Problems

�25

Shared Sub-Problems

�26

NP

Det

a

Nominal

Nominal

Nominal

Nominal

Noun

flight

PP

from Indianapolis

PP

to Houston

PP

on TWA

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm
�27

Recursion
● Many grammars have recursive rules

● S → S Conj S

● In search approaches, recursion is problematic

● Can yield infinite searches

● Top-down especially vulnerable

�28

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

�29

Dynamic Programming
● Challenge:

● Repeated substructure → Repeated Work

● Insight:

● Global parse composed of sub-parses

● Can record these sub-parses and re-use

● Dynamic programming avoids repeated work by recording the subproblems

● Here, stores subtrees

�30

Parsing w/Dynamic Programming
● Avoids repeated work

● Allows implementation of (relatively) efficient parsing algorithms

● Polynomial time in input length

● Typically cubic (n3) or less

● Several different implementations

● Cocke-Kasami-Younger (CKY) algorithm

● Earley algorithm

● Chart parsing

�31

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

�32

Grammar Equivalence and Form

● Weak Equivalence

● Accepts same language

● May produce different structures

● Strong Equivalence

● Accepts same language

● Produces same structures

�33

Grammar Equivalence and Form
● Reason?

● We can create a weakly-equivalent grammar that allows for greater efficiency

● This is required by the CKY algorithm

�34

Chomsky Normal Form (CNF)
● Required by CKY Algorithm

● All productions are of the form:

● A → B C

● A → a

● Most of our grammars are not of this form:

● S → Wh-NP Aux NP VP

● Need a general conversion procedure

�35

CNF Conversion
1) Hybrid productions:

INF-VP → to VP

2) Unit productions:

A → B

3) Long productions:

A → B C D …

�36

CNF Conversion:  
Hybrid Productions

● Hybrid production:

● Replace all terminals with dummy non-terminal

● INF-VP → to VP
● INF-VP → TO VP
● TO → to

�37

CNF Conversion:  
Unit Productions

● Unit productions:

● Rewrite RHS with RHS of all derivable, non-unit productions

● If A ⇒⃰ B and B → w, add A → w

● Nominal → Noun, Noun → dog
● Nominal → dog

● Noun → dog

�38

CNF Conversion:
Long Productions

● Long productions

● Introduce unique nonterminals, and spread over rules 
 
 

�39

S → Aux NP VP
S → X1 VP X1 → Aux NP

CNF Conversion
1) Convert terminals in hybrid rules to dummy non-terminals

2) Convert unit productions

3) Binarize long production rules

�40

�41

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

�42

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

�43

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

�44

CKY Parsing
● (Relatively) efficient bottom-up parsing algorithm

● Based on tabulating substring parses to avoid repeat work

● Approach:

● Use CNF Grammar

● Build an (n + 1) × (n + 1) matrix to store subtrees

● Upper triangular portion

● Incrementally build parse spanning whole input string

�45

CKY Matrix

�46

[3,4] [3,5]

[0,5][0,2] [0,3]

[1,4]

[0,1] [0,4]

[2,5]

[1,3]

[2,3]

[4,5]

[2,4]

[1,5][1,2]

Book the flight through Houston

CKY Matrix

�47

[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

Book the flight through Houston

CKY Matrix

�48

Book the flight through Houston
[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

0 1 2 3 4 5

CKY Matrix

�49

Book the flight through Houston
[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

0 1 2 3 4 5

Dynamic Programming in CKY
● Key idea:

● for i < k < j

● …and a parse spanning substring [i, j]

● ∃k such that there are parses spanning [i, k] and [k, j]

● We can construct parses for whole sentences by building from these partial parses

● So to have a rule A → B C in [i, j]
● Must have B in [i, j] and C in [k, j] for some i < k < j

● CNF forces this for all j > i + 1

�50

HW #2
LING 571

Deep Processing Techniques for NLP
January 10, 2018

�51

Goals
● Begin development of CKY parser

● First stage: Conversion to CNF

● Develop Representation for CFG

● Manipulate/Transform Grammars

● Investigate weakly equivalent grammars

�52

Task
● Conversion:

● Read in grammar rules from arbitrary CFG

● Convert to CNF

● Write out new grammar

● Validation:

● Parse test sentences with original CFG

● Parse test sentences with CFG in CNF

�53

Approach
● May use any programming language

● In keeping with course policies

● May use existing models/packages to represent rules

● Need RULE, RHS, LHS, etc

● NLTK, Stanford

● Conversion code must be your own

�54

https://canvas.uw.edu/courses/1126642/pages/course-policies

Data
● ATIS (Air Travel Information System) data

● Grammar provided in nltk-data

● Terminals in double-quotes

● the → “the”

● All required files on patas dropbox

● NOTE:

● Grammar is fairly large (~193K Productions)

● Grammar is fairly ambiguous (Test sentences may have 100 parses)

● You will likely want to develop against a smaller grammar
�55

NLTK Grammars

�56

>>> gr1 = nltk.data.load('grammars/large_grammars/atis.cfg')

>>> gr1.productions()[0] 
ABBCL_NP -> QUANP_DTI QUANP_DTI QUANP_CD AJP_JJ NOUN_NP

PRPRTCL_VBG

>>> gr1.productions()[0].lhs() 
ABBCL_NP

>>> gr1.productions(lhs=gr1.productions()[1].lhs()) 
[ADJ_ABL -> only, ADJ_ABL->such]

