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Announcements
● HW #2 will be extended to Monday, 11/8 at 11:00pm.

● Then we will be caught up, so HW #3 will still be due that Friday.

● If you want to use python3.6 on Patas:

● /opt/python-3.6/bin/python3

● nltk is installed.
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Type Hinting in Python
● Supported in ≥3.6 [tutorial]  
 
from typing import List  
from nltk.grammar import Production  
 
def fix_hybrid_production(hybrid_prod: Production) -> List[Production]:  
    …

● Also available in PyCharm through docstrings and/or comments:  
 
def fix_hybrid_productions(hybrid_prod):  
    “””  
    This function takes a hybrid production and  
    returns a list of new CNF productions  
    :type hybrid_prod: Production  
    :rtype: list[Production]  
    “””
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https://medium.com/@ageitgey/learn-how-to-use-static-type-checking-in-python-3-6-in-10-minutes-12c86d72677b
https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html


Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm
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Recap: Parsing as Search
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Parsing Ambiguity
● Lexical Ambiguity:

● Book/NN → I left a book on the table.

● Book/VB → Book that flight.

● Structural Ambiguity
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Attachment Ambiguity
“One morning, I shot an elephant in my pajamas.
How he got into my pajamas, I’ll never know.” — Groucho Marx

�9



Attachment Ambiguity
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“We saw the Eiffel Tower flying to Paris”
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Coordination Ambiguity:
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Local vs. Global Ambiguity
● Local ambiguity:

● Ambiguity that cannot contribute to a full, valid parse

● e.g. Book/NN in “Book that flight”

● Global ambiguity

● Multiple valid parses
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Why is Ambiguity a Problem?
● Local ambiguity:

● increased processing time

● Global ambiguity:

● Would like to yield only “reasonable” parses

● Ideally, the one that was intended*
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Solution to Ambiguity?
●Disambiguation!
● Different possible strategies to select correct interpretation:
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● Some prepositional structs more likely to attach high/low

● John was thought to have been seen by Mary

● Mary could be doing the seeing or thinking — seeing more likely

Disambiguation Strategy:  
Statistical
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● Some phrases more likely overall

● [old [men and women]] is a more common construction than [old men] and [women]

Disambiguation Strategy:  
Statistical
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Disambiguation Strategy:  
Semantic

● Some interpretations we know to be semantically impossible

● Eiffel tower as subject of fly
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Disambiguation Strategy:  
Pragmatic

● Some interpretations are possible, unlikely given world knowledge

● e.g. elephants and pajamas
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Disambiguation Strategy:  

!
● Alternatively, keep all parses

● (Might even be the appropriate action for some jokes)
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Repeated Work
● Search (top-down/bottom-up) both lead to repeated substructures

● Globally bad parses can construct good subtrees

● …will reconstruct along another branch

● No static backtracking can avoid

● Efficient parsing techniques require storage of partial solutions

● Example: a flight from Indianapolis to Houston on TWA
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Shared Sub-Problems
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Shared Sub-Problems

�24

NP

Det

a

Nominal

Nominal

Noun

flight

PP

from Indianapolis…



NP

Det

a

Nominal

Nominal

Nominal

Noun

flight

PP

from Indianapolis

PP

to Houston…

Shared Sub-Problems

�25



Shared Sub-Problems
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity

● Repeated Substructure

● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Recursion
● Many grammars have recursive rules

● S → S Conj S 

● In search approaches, recursion is problematic

● Can yield infinite searches

● Top-down especially vulnerable
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Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Dynamic Programming
● Challenge:

● Repeated substructure → Repeated Work

● Insight:

● Global parse composed of sub-parses

● Can record these sub-parses and re-use

● Dynamic programming avoids repeated work by recording the subproblems

● Here, stores subtrees
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Parsing w/Dynamic Programming
● Avoids repeated work

● Allows implementation of (relatively) efficient parsing algorithms

● Polynomial time in input length

● Typically cubic (n3) or less

● Several different implementations

● Cocke-Kasami-Younger (CKY) algorithm

● Earley algorithm

● Chart parsing
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Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Grammar Equivalence and Form

● Weak Equivalence

● Accepts same language

● May produce different structures

● Strong Equivalence

● Accepts same language

● Produces same structures
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Grammar Equivalence and Form
● Reason?

● We can create a weakly-equivalent grammar that allows for greater efficiency

● This is required by the CKY algorithm
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Chomsky Normal Form (CNF)
● Required by CKY Algorithm

● All productions are of the form:

● A → B C 

● A → a 

● Most of our grammars are not of this form:

● S → Wh-NP Aux NP VP 

● Need a general conversion procedure
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CNF Conversion
1) Hybrid productions:

INF-VP → to VP 

2) Unit productions:

A → B 

3) Long productions:

A → B C D …
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CNF Conversion:  
Hybrid Productions

● Hybrid production:

● Replace all terminals with dummy non-terminal

● INF-VP → to VP 
● INF-VP → TO VP 
● TO → to
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CNF Conversion:  
Unit Productions

● Unit productions:

● Rewrite RHS with RHS of all derivable, non-unit productions

● If A ⇒⃰ B and B → w, add A → w 

● Nominal → Noun, Noun → dog 
● Nominal → dog 

● Noun → dog
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CNF Conversion:
Long Productions

● Long productions

● Introduce unique nonterminals, and spread over rules 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S → Aux NP VP
S → X1 VP X1 → Aux NP



CNF Conversion
1) Convert terminals in hybrid rules to dummy non-terminals

2) Convert unit productions

3) Binarize long production rules
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ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
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ℒ1 Grammar ℒ1 in CNF
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ℒ1 Grammar ℒ1 in CNF
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Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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CKY Parsing
● (Relatively) efficient bottom-up parsing algorithm

● Based on tabulating substring parses to avoid repeat work

● Approach:

● Use CNF Grammar

● Build an (n + 1) × (n + 1) matrix to store subtrees

● Upper triangular portion

● Incrementally build parse spanning whole input string
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CKY Matrix
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CKY Matrix

�47

[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

Book the flight through Houston



CKY Matrix
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CKY Matrix
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Dynamic Programming in CKY
● Key idea:

● for i < k < j

● …and a parse spanning substring [ i, j ]

● ∃k such that there are parses spanning [ i, k ] and [ k, j ]

● We can construct parses for whole sentences by building from these partial parses

● So to have a rule A → B C in [ i, j ]
● Must have B in [ i, j ] and C in [ k, j ] for some i < k < j

● CNF forces this for all j > i + 1
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HW #2
LING 571

Deep Processing Techniques for NLP
January 10, 2018
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Goals
● Begin development of CKY parser

● First stage: Conversion to CNF

● Develop Representation for CFG

● Manipulate/Transform Grammars

● Investigate weakly equivalent grammars
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Task
● Conversion:

● Read in grammar rules from arbitrary CFG

● Convert to CNF

● Write out new grammar

● Validation:

● Parse test sentences with original CFG

● Parse test sentences with CFG in CNF
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Approach
● May use any programming language

● In keeping with course policies

● May use existing models/packages to represent rules

● Need RULE, RHS, LHS, etc

● NLTK, Stanford

● Conversion code must be your own
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https://canvas.uw.edu/courses/1126642/pages/course-policies


Data
● ATIS (Air Travel Information System) data

● Grammar provided in nltk-data

● Terminals in double-quotes

● the → “the” 

● All required files on patas dropbox

● NOTE:

● Grammar is fairly large (~193K Productions)

● Grammar is fairly ambiguous (Test sentences may have 100 parses)

● You will likely want to develop against a smaller grammar
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NLTK Grammars
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>>> gr1 = nltk.data.load('grammars/large_grammars/atis.cfg') 

>>> gr1.productions()[0] 
ABBCL_NP -> QUANP_DTI QUANP_DTI QUANP_CD AJP_JJ NOUN_NP 

PRPRTCL_VBG 

>>> gr1.productions()[0].lhs() 
ABBCL_NP 

>>> gr1.productions(lhs=gr1.productions()[1].lhs()) 
[ADJ_ABL -> only, ADJ_ABL->such]


