Content Selection: Graphs, Supervision, HMMs

LING 573 Systems & Applications April 5, 2018

Announcements

- - ...so everyone gets their first choice!
 - David's office hours are posted on the Canvas syllabus homepage.

• Thanks for the TA survey, but David helpfully reminded me that 2 hours are req'd

Begin Recording!

- I have created a README.md in the dropbox/17-18/573 directory
 - Should clarify WTH is happening inside the various folders.
- Data in dropbox/17-18/573/Data
 - From TAC 2009 AESOP Track (documentation here)
- This task:
 - Guided (Document sets/clusters are provided)
 - Evaluated against humans (./models)
 - ...and other automatic systems (./peers)

Clarification of the Task Data

- You will note, within the **/models** directory, there are:
 - training / devtest / evaltest
- ...why training?
 - We will get to that in today's lecture.
 - (TL;DL Supervision)

Clarification of the Task Data

Input:

- Topic Categories:
 - I. Weather/Natural Events/Disasters
 - 2. Violence/Uprisings/Terror
 - 3. Disease/Disorders/Health
 - 4. Wildlife
 - 5. Legal Cases
- Topics

WASHINGTON

Document Sets (two sets per topic, ten documents per set)

Clarification of the Task Data

• Evaluation Data:

- Comparable extractive summaries provided by
 - humans
 - "peer" automatic summarization systems

Clarification of the Task Data

Roadmap

MEAD

- Classic end-to-end System
- Cues to content Extraction
- Bayesian Topic Models
- Graph-based Approaches
 - Random Walks
- Supervised selection
 - Term ranking with rich features

- Radev et al, <u>2000</u>, <u>2001</u>, <u>2004</u>
- Centroid-Based Summarization System
- tf•idf similarity features
- Multiple-Document Summarizer
- Publicly available implementation (no warranty!)
- Solid performance in DUC tasks
- Standard non-trivial evaluation baseline

MEAD

Main Ideas

- Select sentences central to cluster
 - "cluster-based sentence utility" (CBSU)
 - Measure of sentence relevance to cluster (Score from 0–10)
- Select distinct representative from equivalence classes
 - "cross-sentence information subsumption" (CSIS)
 - Sentences including same information content said to "subsume"
 - A. John fed Spot
 - B. John gave food to Spot and water to the plants
 - $I(B) \subset I(A)$
 - If mutually subsume, form equivalence class.

Centroid-based Models

- Assume clusters of topically related documents
 - Provided by automatic or manual clusters
- Centroid pseudo-document of terms with $Count \times IDF$ above some threshold
 - Intuition: centroid terms indicative of topic
 - Count: average # of term occurrences in cluster
 - IDF computed over larger side corpus (e.g. full AQUAINT)

MEAD Content Selection

• Input:

- Sentence segmented, cluster documents (*n* sents)
- Compression rate (e.g. 20%)
- Output:
 - n×r sentence summary
- Select highest scoring sentences based on
 - Centroid score
 - Position score
 - First-sentence overlap
 - Redundancy

WASHINGTON

Score Computation

 $Score(s_i) = \sum_i w_c C_i \!\!+\! w_p P_i \!\!+\! w_f F_i$

 \dot{i} = ith sentence in doc

•
$$C_i = \sum_i C_{w,i}$$

Sum over centroid values of words in sentence

• $F_i = S_1 \cdot S_i$

• Overlap with first sentence

• TF-based inner product of sentence with first sentence in document.

$$w_c, w_p, w_f =$$

•
$$P_i = \left(\frac{(n-i+1)}{n} \right) \times C_{max}$$

- Positional score: C_{max} score of highest sentence in document
 - Scaled by distance from beginning of document

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

• n = doc length

Weights for different components

- Alternative redundancy approaches:
 - RedundancyMax:
 - Excludes sentences with cosine overlap > threshold
- Redundancy penalty

• $R_s = 2 \cdot \frac{\# \text{ of overlapping words}}{\# \text{ words in sentence pair}}$

• Subtracted from $Score(s_i) = \sum_i w_c C_i + w_p P_i + w_f F_i - w_R R_s$

- Weighted by highest scoring sentence in set $(w_R = Max_s(Score(s)))$
- $R_s = 1$ when identical, 0 when no words in common

WASHINGTON

Managing Redundancy

Information Ordering

- Chronological by document date
- Information realization
 - Pure extraction, no sentence revision
- Evaluation
 - Participated in DUC 2001, 2003
 - Among top 5 systems
 - Solid, straightforward system.
 - Publicly available; will compute/output weights.

SITY OF M WASHINGTON

System Overview

Bayesian Topic Models

- Perspective: Generative story for document topics
- Multiple models of word probability, topics
 - General English
 - Input Document Set
 - Individual documents
- Select summary which minimizes KL-divergence
 - Between document set and summary: $KL(P_D || P_S)$
- Often by greedily selecting sentences
 - Also global models

Graph-Based Models

- LexRank (Erkan & Radev, 2004)
- Key ideas:
 - Graph-based model of sentence saliency
 - Draws ideas from PageRank, Hyperlink-Induced Topic Search (HITS)
 - Contrasts with direct term-weighting models
 - Beats tf · idf centroid

Graph View

- Centroid Approach:
 - Central pseudo-document of key words in cluster
- Graph-based approach
 - Sentences (or other units) in cluster link to each other
 - Salient if similar to many others
 - More central or relevant to the cluster
 - Low similarity with most others, not central

Constructing a Graph

- Graph:
 - Nodes Sentences
 - Edges measure of similarity between sentences
- How do we compute similarity between nodes?
 - Here: $tf \cdot idf$ modified cosine, but could use other schemes
 - (*tf* = word count within a **sentence**, *df* = within this document, **not** docset)

idf-modified-cosine $(x, y) = \frac{1}{\sqrt{\sum}}$

$$\frac{\sum_{w \in x, y} \mathrm{tf}_{w, x} \mathrm{tf}_{w, y} (\mathrm{idf}_{w})^{2}}{\sum_{i \in x} (\mathrm{tf}_{x_{i}, x} \mathrm{idf}_{x_{i}})^{2}} \times \sqrt{\sum_{y_{i} \in y} (\mathrm{tf}_{y_{i}, y} \mathrm{idf}_{y_{i}})^{2}}$$

(Erkan & Radev, 2004)

WASHINGTON

Edge Weights:

- [0.1, 0.2)
- [0.0, 0.1)

Constructing a Graph

- How do we compute overall sentence saliency?
 - Degree centrality
 - LexRank

- Centrality # of neighbors in graph
 - **Draw** $\operatorname{Edge}(a,b)$ if $\operatorname{sim}(a,b) \geq threshold$

Degree Centrality

Almost fully connected

• Not particularly informative

Threshold = 0.1-0.2

• Some filtering, can be useful

Threshold = 0.3

• Only two connections remain, also uninformative

LexRank

- Degree centrality: | edge = | vote
 - Possibly problematic
 - e.g. erroneous document in cluster, some sentence may score high
- LexRank idea:
 - Node can have high(er) score via high scoring neighbors
 - Same idea as PageRank, HITS
 - Page ranked high b/c incoming link from high ranking pages

p(u) is centrality adj(u) = adjacent nodesdeq(v) = degree

$$p(u) = \sum_{v \in adj(u)}$$

$$\frac{p(v)}{deg(v)}$$

Power Method: Computing the Weights

Input: Adjacency matrix M
Initialize p₀ (uniform distribution)
t=0;
repeat
 t=t+1
 pt=M^Tpt-1
until convergence
Return pt

Computes the stationary distribution of a Markov chain

LexRank: Computing the Weights

- Can think of matrix X as transition matrix of Markov chain
 - X(i,j) is probability of transition from state *i* to state *j*
- Will converge to a stationary distribution (r)
 - Given certain properties (aperiodic, irreducible)
 - Probability of ending up in each state via random walk
- Can compute iteratively to converge via PageRank formula (*d* is "damping factor"):

$$p(u) = \frac{d}{N} + (1)$$

$$-d)\sum_{v\in adj(u)}rac{p(v)}{deg(v)}$$

LexRank Score Example

• For earlier graph:

ID	LR(0.1)	LR(0.2)	LR(0.3)	Centroid
dlsl	0.6007	0.6944	1.0000	0.7209
d2s l	0.8466	0.7317	1.0000	0.7249
d2s2	0.3491	0.6773	1.0000	0.1356
d2s3	0.7520	0.6550	1.0000	0.5694
d3s l	0.5907	0.4344	1.0000	0.6331
d3s2	0.7993	0.8718	1.0000	0.7972
d3s3	0.3548	0.4993	1.0000	0.3328
d4s l	1.0000	1.0000	1.0000	0.9414
d5s l	0.5921	0.7399	1.0000	0.9580
d5s2	0.6910	0.6967	1.0000	1.0000
d5s3	0.5921	0.4501	1.0000	0.7902

Continuous LexRank

- Basic LexRank ignores similarity scores
 - Except for initial thresholding of adjacency
- Could just use weights directly (rather than degree)

$$p(u) = \frac{d}{N} + (1 - d)$$

 $\sum_{\in adj(u)} \frac{\cos(u,v)}{\sum_{z \in adj(v)} \cos(z,v)} p(v)$

Advantages vs. Centroid

- Captures information subsumption
 - Highly ranked sentences have greatest overlap w/adjacent
 - Will promote those sentences
- Reduces impact of spurious high-IDF terms
 - Rare terms get very high weight (reduce TF)
 - Lead to selection of sentences w/high IDF terms
 - Effect minimized in LexRank

Example Results

• Beat official DUC 2004 entrants

• All versions beat baselines and centroid

	min
Centroid	0.3580
Degree (t=0.1)	0.3590
LexRank (t=0.1)	0.3646
Cont. LexRank	0.3617

baselines:

2004 Task 2				
max	average			
0.3767	0.3670			
0.3830	0.3707			
0.3808	0.3736			
0.3826	0.3758			

random: 0.3238 lead-based: 0.3686

Content Selection: Supervised

Supervised Word Selection

- RegSumm
 - Improving the Estimation of Word Importance for news Multi-Document Summarization (Hong & Nenkova, '14)
- Key ideas:
 - Supervised method for word selection
 - Diverse, rich feature set
 - Unsupervised measures, POS, NER, position, etc
 - human summaries

Identification of common "important" words via side corpus of news articles and

Basic Approach

- Learn Keyword Imporatnce
 - Contrast with unsupervised selection, learning sentences
- Train regression over large number of possible features
 - Supervision over words
 - Did document word appear in summary or not?
- Greedy sentence selection

- Highest scoring sentences: average word weight
- Do not add if \geq 0.5 cosine similarity with current sentences

Features I

- Unsupervised measures (binary features given a threshold)
- Word probability: $\frac{count(w)}{N}$

• computed over input cluster

- Log likelihood ratio: Gigaword used for background corpus
- Markov Random Walk (MRW)
 - Graphical model approach like LexRank
 - Nodes = words

- Edges = # of syntactic dependencies between words in sentence
- Weights via PageRank algorithm

Features II

- "Global" word importance
 - Are there words which are intrinsically likely to show up in (news) summaries?
- Approach:

- Build language models on NYT corpus of articles & summaries
 - One model on articles, one model on summaries
 - Measures: $Pr_A(w)$, $Pr_A(w) \cdot Pr_G(w)$,
 - $KL(A \| G) = Pr_A(w) \cdot \ln \left(\frac{Pr_A(w)}{Pr_G(w)} \right)$
- Binary features: top-k or bottom-k features

$$Pr_A(w)/Pr_G(w)$$

$$\left(\frac{w}{w}\right) \quad KL(G||A) = Pr_G(w) \cdot \ln\left(\frac{Pr_G(w)}{Pr_A(w)}\right)$$

Features III

- Adaptations of Common Features
 - Word position as proportion of document [0,1]
 - Earliest first, latest last, average, average first
 - Word type: POS, NER
 - Emphasizes NNS, NN, capitalization; ORG, PERS, LOC
 - Sentiment (MPQA + LIWC)

 - Strong sentiment likely or not? NOT
 - **LIWC: Linguistic Inquiry and Word Count**
 - words for 69 categories

MPQA: Multi-Perspective Question Answering — (sentiment, subjectivity terms)

• {positive feature: death, anger, money} {negative feature: pron, neg, function words, swear, adverbs, etc}

Assessment: Words

- Select N highest ranked keywords via regression
- Compute F-measure over words in summaries
 - G_i : i = # of summaries in which word appears

Gi	#words	Prob	LLR	MRW	REGBASIC	RegSum
G	80	43.6	37.9	38.9	39.9	45.7
Gı	100	44.3	38.7	39.2	41.0	46.5
Gı	120	44.6	38.5	39.2	40.9	46.4
G ₂	30	47.8	44.0	42.4	47.4	50.2
G ₂	35	47. I	43.3	42.I	47.0	49.5
G ₂	40	46.5	42.4	41.8	46.4	49.2

Assessment: Summaries

• Summarization with ROUGE-1,2,4

Syste

Prc

MR

RegB

KI

Peer

SUBM

DP

REGS

SotA Systems

Basic Systems

em	R-I	R-2	R-4
OB	35.14	8.17	1.06
R	34.60	7.56	0.83
W	35.78	8.15	0.99
ASIC	37.56	9.28	1.49
	37.97	8.53	1.26
-65	37.62	8.96	1.51
10D	39.18	9.35	1.39
P	39.79	9.62	1.57
SUM	38.57	9.75	1.60

