
PCFGs:  
Parsing & Evaluation
LING 571 — Deep Processing Techniques for NLP

October 10, 2018
Ryan Georgi

�1



Announcements & Misc
● For CKY Implementation:

● NLTK’s CFG.productions() method:

● optional rhs= argument only looks at first token of RHS

�2



CKY Follow-up: Backpointers

�3



Backpointers
● Instead of list of possible nonterminals for that node, each cell should have:

● Nonterminal for the node

● Pointer to left and right children cells

● Either direct pointer to cell, or indices

�4

bp_2 = BackPointer()
bp_2.l_child = [X2, (1,4)]
bp_2.r_child = [PP, (4,6)]

One Option:



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}

�5

NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

S

NP VP

I            prefer         a           flight         on         TWA



NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�6

I            prefer         a           flight         on         TWA

cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}

S

NP

I

VP



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}

NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�7

S

NP

I

VP

Verb NP

I            prefer         a           flight         on         TWA



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}

NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�8

S

NP

I

VP

Verb

prefer

NP

I            prefer         a           flight         on         TWA



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
cky_table[2,6][NP] = {(Det, (2,3),
                       Nom, (3,6)}

NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�9

S

NP

I

VP

Verb

prefer

NP

Det Nom

I            prefer         a           flight         on         TWA



cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}
cky_table[1,2][Verb] = {(‘prefer’)}
cky_table[2,6][NP] = {(Det, (2,3),
                       Nom, (3,6)}
cky_table[2,3][Det] = {(‘a’)}

NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�10

I            prefer         a           flight         on         TWA

S

NP

I

VP

Verb

prefer

NP

Det

a

Nom



NP, 
Pronoun
[0,1]

S

[0,2] [0,3]

S

[0,4] [0,5]

S

[0,6]

Verb, VP, S

[1,2] [1,3]

VP, X2, S

[1,4] [1,5]

VP, X2, S

[1,6]

Det

[2,3]

NP

[2,4] [2,5]

NP

[2,6]

Noun, Nom

[3,4] [3,5]

Nom

[3,6]

Prep

[4,5]

PP

[4,6]

NNP, NP

[5,6]

�11

S

NP

I

VP

X2 PP

I            prefer         a           flight         on         TWA

S

NP

I

VP

Verb NP

cky_table[0,6][S] = {(NP, (0,1),
                      VP, (1,6))}
cky_table[0,1][NP] = {(‘I’)}
cky_table[1,6][VP] = {(Verb, (1,2),
                       NP, (2,6)),
                      (X2, (1,4),
                       PP, (4,6))}



PCFGs: Recap

�12



PCFGs: Formal Definition

�13

N a set of non-terminal symbols (or variables)

Σ a set of terminal symbols (disjoint from N)

R
a set of rules of productions, each of the form A → 𝜷[p], where A is a non-terminal 

where A is a non-terminal, 𝜷 is a string of symbols from the infinite set of strings (Σ⋃N)∗ 
and p is a number between 0 and 1 expressing P(𝜷|A)

S a designated start symbol



● A PCFG assigns probability to each parse tree T for input S

● Probability of T: product of all rules used to derive T

Disambiguation

�14

P(T, S) =
n

∏
i=1

P(RHSi |LHSi)

P(T, S) = P(T) ⋅ P(S |T) = P(T)



Application:  
Language Modeling

● n-grams helpful for modeling the probability of a string

● To model a whole sentence with n-grams either:

● Must use 10+-grams… too sparse

● Approximate using conditioning on limited context: 

● PCFGs are able to give probability of entire string without as bad sparsity

● Model probability of syntactically valid sentences

● Not just probability of sequence of words

�15

P(wi−1, wi)
P(wi−1)



�16

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S

NP

Pron

I

VP

Verb

prefer

NP

Det

a

Nom

Noun

flight

PP

P

on

NP

NNP

TWA

S → NP VP [0.8] S → NP VP [0.8]
NP → Pron [0.35] NP → Pron [0.35]
Pron → I [0.4] Pron → I [0.4]

VP → V NP PP [0.1] VP → V NP [0.2]
V → prefer [0.4] V → prefer [0.4]

NP → Det Nom [0.2] NP → Det Nom [0.2]
Det → a [0.3] Det → a [0.3]

Nom → N [0.75] Nom → Nom PP [0.05]
N → flight [0.3] Nom → N [0.75]
PP → P NP [1.0] N → flight [0.3]

P → on [0.2] PP → P NP [1.0]
NP → NNP [0.3] P → on [0.2]

NNP → NWA [0.4] NP → NNP [0.3]
NNP → NWA [0.4]

~1.452 × 10-6
~1.452 × 10-7



Parsing Problem for PCFGs
● Select T such that (s.t.)  
 
 
 

● String of words S is yield of parse tree 

● Select the tree T̂ that maximizes the probability of the parse

● Extend existing algorithms: e.g. CKY

�17

T̂ (S) = argmax
Ts.t.S=yield(T )

P (T )



PCFGs: Parsing

�18



Probabilistic CKY (PCKY)
● Like regular CKY

● Assumes grammar in Chomsky Normal Form (CNF)

● A → B C 
● A → w 

● Represent input with indices b/t words:

●  0 Book 1 that 2 flight 3 through 4 Houston 5

�19



Probabilistic CKY (PCKY)
● For input string length n and non-terminals V

● Cell [ i, j, A ] in ( n+1 ) × ( n+1 ) × V matrix

● Contains probability that A spans [i, j]

�20



PCKY Algorithm

�21

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability 
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar } 
      table[ j–1, j, A ] ← P(A → words[j]) 
for i ← from j–2 downto 0 do 
for k ← i + 1 to j–1 do 
for all { A | A → B C ∈ grammar, 
       and table[i, k, B] > 0 and table[ k, j, C ] > 0 } 
if (table[ i, j, A ] < P(A → BC )×table[ i, k, B ]×table[ k,j,C ]) then 
    table[ i, j, A ] ← P(A → BC )×table[i,k,B]×table[k,j,C] 
    back[ i, j, A ] ← { k, B, C } 
return BUILD_TREE(back[ 1, LENGTH(words), S ]), table[ 1,LENGTH(words), S ]



PCKY Grammar Segment

�22

S → NP VP [0.80] Det → the [0.40]
NP → Det N [0.30] Det → a [0.40]
VP → V NP [0.20] V → includes [0.05]

N → meal [0.01]
N → flight [0.02]



Det – 0.4

[0,1]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

PCKY Matrix

�23
The   flight   includes   a   meal

0 1 2 3 4 5



Det – 0.4

[0,1]

N – 0.02

[1,2]

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

PCKY Matrix

�24
0 1 2 3 4 5

The   flight   includes   a   meal



PCKY Matrix

�25
0 1 2 3 4 5

The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

Det – 0.4

[0,1]

NP

[0,2]

N – 0.02

[1,2]

P = P(NP → Det N)·  
P(Det → a)·  

  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024



PCKY Matrix

�26
0 1 2 3 4 5

The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]

P = P(NP → Det N)·  
P(Det → a)·  

  P(N → flight)

P = 0.3· 0.4· 0.02 = 0.00024

Det – 0.4

[0,1]

NP – 0.0024

[0,2]

N – 0.02

[1,2]



Det – 0.4

[0,1]

NP – 0.0024

[0,2] [0,3] [0,4]

S – 2.304×10-8

[0,5]

N – 0.02

[1,2] [1,3] [1,4] [1,5]

V – 0.05

[2,3] [2,4]

VP – 1.2×10-5

[2,5]

Det – 0.4

[3,4]

NP – 0.0012

[3,5]

N – 0.01

[4,5]

PCKY Matrix

�27
0 1 2 3 4 5

The   flight   includes   a   meal

S → NP VP [0.80]
NP → Det N [0.30]
VP → V NP [0.20]

Det → the [0.40]
Det → a [0.40]

V → includes [0.05]
N → meal [0.01]
N → flight [0.02]



Inducing a PCFG

�28



Learning Probabilities
● Simplest way: 

● Use treebank of parsed sentences

● To compute probability of a rule, count: 

● Number of times a nonterminal is expanded:                             Σ𝛾 Count(𝛼→𝛾)
● Number of times a nonterminal is expanded by a given rule:             Count(𝛼→𝛽) 

● Alternative: Learn probabilities by re-estimating

● (Later)
�29

P(α → β |α) =
Count(α → β)

∑γ Count(α → γ)
=

Count(α → β)
Count(α)



Probabilistic Parser Development Paradigm

�30

Train Dev Test

Size

Large
 

(eg. WSJ 2–21,  
39,830 sentences)

Small

(e.g. WSJ 22)

Small/Med

(e.g. WSJ, 23,
2,416 sentences)

Usage Estimate rule 
probabilities

Tuning/Verification, 
Check for Overfit

Held Out,  
Final Evaluation



Parser Evaluation

�31



Parser Evaluation
● Assume a ‘gold standard’ set of parses for test set

● How can we tell how good the parser is?

● How can we tell how good a parse is?

● Maximally strict:  identical to ‘gold standard’

● Partial credit:

● Constituents in output match those in reference

● Same start point, end point, non-terminal symbol

�32



● Crossing Brackets:

● # of constituents where produced parse has bracketings that overlap for the siblings:

● ((A B) C) — { (0,2), (2,3) }  
and hyp. has  
(A (B C)) — { (0,1), (1, 3) }

Crossing Brackets

Parser Evaluation

�33

TOP

A B

C

TOP

A

B

C



Parseval
● How can we compute parse score from constituents?

● Multiple Measures:

�34

Labeled Recall (LR) = 
# of correct constituents in hypothetical parse

# of total constituents in reference parse

Labeled Precision (LP) =
# of correct constituents in hypothetical parse

# of total consituents in hypothetical parse



Parseval
● F-measure:

● Combines precision and recall

● Let β ∈ ℝ ,  β > 0 that adjusts P vs. R s.t. 

● Fβ -measure is then:

● With F1-measure as

�35

β ∝
R
P

Fβ = (1 + β2) ⋅
P ⋅ R

β2 ⋅ P + R

F1 =
2PR

P + R



Evaluation: Example

�36

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

S

NP

A

a

VP

B

b

NP

C

c

PP

D

d

HypothesisReference

S(0,4)

NP(0,1)

VP(1,4)

NP(2,3)

PP(3,4)

S(0,4)

NP(0,1)

VP(1,4)

NP(2,4)

PP(3,4)

0      1       2        3         4

0      1       2        3         4
LP: 4/5
LR: 4/5
F1: 4/5



State-of-the-Art Parsing
● Parsers trained/tested on Wall Street Journal PTB

● LR: 90%+; 

● LP: 90%+; 

● Crossing brackets: 1%

● Standard implementation of Parseval:

● evalb

�37



Evaluation Issues
● Only evaluating constituency

● There are other grammar formalisms:

● LFG (Constraint-based)

● Dependency Structure

● Extrinsic evaluation

● How well does getting the correct parse match the 
semantics, etc?

�38



Earley Parsing

�39



Earley vs. CKY
● CKY doesn’t capture full original structure

● Can back-convert binarization, terminal conversion

● Unit non-terminals require change in CKY

● Earley algorithm

● Supports parsing efficiently with arbitrary grammars

● Top-down search

● Dynamic programming

● Tabulated partial solutions

● Some bottom-up constraints
�40



Earley Algorithm
● Another dynamic programming solution

● Partial parses stored in “chart”

● Compactly encodes ambiguity

● O(N3) 

● Chart entries contain:

● Subtree for a single grammar rule

● Progress in completing subtree

● Position of subtree w.r.t. input

�41



Earley Algorithm
● First, left-to-right pass fills out a chart with N+1 states

● Chart entires — sit between words in the input string

● Keep track of states of the parse at those positions

● For each word position, chart contains set of states representing all partial parse trees 
generate so far

● e.g. chart[0] contains all partial parse trees generated at the beginning of sentence

�42



Chart Entries
● Three types of constituents:

● Predicted constituents

● In-progress constituents

● Completed constituents

�43



Parse Progress
● Represented by Dotted Rules

● Position of • indicates type of constituent

● 0 Book 1 that 2 flight 3

● S → • VP                [0,0]     (predicted) 

● NP → Det • Nom    [1,2]     (in progress) 

● VP → V NP •          [0,3]     (completed) 

● [x,y] tells us what portion of the input is spanned so far by rule

● Each state si: <dotted rule>, [<back pointer>, <current position>]
�44



0 Book 1 that 2 flight 3
● S → VP, [0,0] 
● First 0 means S constituent begins at the start of input

● Second 0 means the dot is here too

● So, this is a top-down prediction

● NP → Det • Nom, [1,2] 
● the NP begins at position 1

● the dot is at position 2

● so, Det has been successfully parsed

● Nom predicted next
�45



● V → V NP • [0,3] 
● Successful VP parse of entire input

0 Book 1 that 2 flight 3 (continued)

�46

Book that flight
0 1 2 3

S → •  VP

VP →  V NP •

NP → Det • Nominal



Successful Parse
● Final answer found by looking at last entry in chart

● If entry resembles S → α • [0,N] then input parsed successfully

● Chart will also contain record of all possible parses of input string, given the 
grammar

�47



Parsing Procedure for the Earley Algorithm
● Move through each set of states in order, applying one of three operations:

● predictor: add predictions to the chart

● scanner: read input and add corresponding state to chart

● completer: move dot to right when new constituent found

● Results (new states) added to current or next set of states in chart

● No backtracking and no states removed: keep complete history of parse

�48



Earley Algorithm from J&M
function EARLEY-PARSE(words, grammar) returns chart 

ENQUEUE((γ⟶ • S, [0,0]), chart[0]) 
for i ⟵ from 0 to LENGTH(words) do 

for each state in chart[i] do 
if INCOMPLETE?(state) and 

NEXT-CAT(state) is not a part of speech then 
PREDICTOR(state) 

elseif INCOMPLETE?(state) and 
NEXT-CAT(state) is a part of speech then 

SCANNER(state) 
else 

COMPLETER(state) 
end 

end 
return(chart)

�49



Earley Algorithm from Book
procedure PREDICTOR((A→α • B β , [i,j])) 

for each (B → γ) in GRAMMAR-RULES-FOR(B,grammar) do 
ENQUEUE((B→• γ, [j,j]), chart[j]) 

end 

procedure SCANNER((A → α • B β,[i,j])) 
if B ⊂ PARTS-OF-SPEECH(word[j]) then 

ENQUEUE((B → word[j], [j,j+1]), chart[j+1] ) 

procedure COMPLETER((B → γ •, [j,k])) 
for each (A → α • B β, [i,j]) in chart[j] do 

ENQUEUE((A → α B •  β, [i,k]), chart[k]) 
end

�50



3 Main Subroutines of Earley
● Predictor

● Adds predictions into the chart

● Completer

● Moves the dot to the right when new constituents are found

● Scanner

● Reads the input words and enters states representing those words into the chart

�51



Predictor
● Intuition:

● Create new state for top-down prediction of new phrase

● Applied when non part-of-speech non-terminals are to the right of a dot:

● S → • VP [0,0] 

● Adds new states to current chart

● One new state for each expansion of the non-terminal in the grammar  
VP → •             [0,0]       Sj: A → α • B β     [i,j]  
VP → • V NP    [0,0]        Si: B → • γ,          [j,j]

�52



Chart[0]

�53

S0 γ → • S [0,0] Dummy start state

S1 S → • NP VP [0.0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor

S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor

S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor



Chart[1]

�54

S12 Verb → book • [0,1] Scanner

S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer

S17 S → VP • [0,1] Completer

S18 VP → VP • PP [0,1] Completer

S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor



Book that flight

�55

ᅭ
• S

S0:  γ → • S [0,0]



Book that flight

�56

ᅭ
S

• VP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0]



Book that flight

�57

ᅭ
S

VP

• Verb NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0]



Book that flight

�58

ᅭ
S

VP

Verb

• book

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0] 
S12: Verb → • book [0,0]



Book that flight

�59

ᅭ
S

VP

Verb

book •

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → • Verb NP [0,0] 
S12: Verb → book • [0,1]



Book that flight

�60

ᅭ
S

VP

Verb •

book

NP

S0:  γ → • S [0,0] 
S3:  S → • VP [0,0] 
S8:  VP → Verb • NP [0,1]



Book that flight

�61

ᅭ
S

VP •

Verb

book

NP

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1]



Book that flight

�62

ᅭ
S

VP

Verb

book

NP

• Det Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]



Book that flight

�63

ᅭ
S

VP

Verb

book

NP

Det

• that

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]  
S23: Det → • “that” [1,1]



Book that flight

�64

ᅭ
S

VP

Verb

book

NP

Det

that •

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → • Det Nominal [1,1]  
S23: Det → “that” • [1,2]



Book that flight

�65

ᅭ
S

VP

Verb

book

NP

Det •

that

Nominal

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2] 



Book that flight

�66

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

• Noun

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → • Noun [2,2]



Book that flight

�67

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun

flight •

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → • Noun [2,2] 
S28: Noun → “flight” • [2,3]



Book that flight

�68

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal

Noun •

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det • Nominal [1,2]  
S25: Nominal → Noun • [2,3]



Book that flight

�69

ᅭ
S

VP

Verb

book

NP

Det

that

Nominal •

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb • NP [0,1] 
S21: NP → Det Nominal • [1,3] 



Book that flight

�70

ᅭ
S

VP

Verb

book

NP •

Det

that

Nominal

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,1] 
S8:  VP → Verb NP • [0,3]



Book that flight

�71

ᅭ
S

VP •

Verb

book

NP

Det

that

Nominal

Noun

flight

S0:  γ → • S [0,0] 
S3:  S → VP • [0,3]



What About Dead Ends? 

�72



Book that flight

�73

S0:  γ → • S [0,0] 
S1: S → • NP VP [0,0] 

NP → • Pronoun 
NP → • Proper-Noun 
NP → • Det Nominal

ᅭ
S

• NP

...

VP

book



Some Collaboration Basics

�74



Git Branches
● Good for semi-isolating your development code from the shared, reviewed code

�75



Reccomended Git Flow
● Initialize a git repository, with a master branch

● (Create initial checkin, if necessary)

● Create a new branch, maybe “adding_rule_objects”

● Make regular checkins on your branch (like saving)

● Switch to master branch, and “pull”

● Merge your branch to master

● …rinse & repeat

�76

https://help.github.com/articles/creating-a-new-repository/


Communication: Check-ins
● For check-ins, three main points:

● What have you been working on?

● What do you plan to work on next?

● Is there anything “blocking” you?

● In industry, these brief check-ins among small teams are often done daily

�77



Project Planning: Kanban Boards
● Before you start working:

● Write out tasks on sticky notes.

● Place in three columns:

● To-Do

● Doing

● Done

● As you work, you can move them from column to column

● Add tasks as new issues come up

● trello.com – has free online implementation of Kanban Boards
�78

http://trello.com

