Content Selection: "CLASSY" & Discourse

NLP Systems & Applications LING 573 April 10, 2018

Announcements

- Start-of-quarter survey online; thanks to those who have answered already.
- For D2, the "unique_alphanumeric" should be your group number

Begin Recording!

Roadmap

- Refresher on LLR, Statistical Significance
- Content Selection
 - "CLASSY": HMM methods
 - Discourse structure
 - Models of discourse structure
 - Structure and relations for summarization
- MEAD Demo (Maybe)

LLR & Term Significance Revisited

 $LLR = \log\left(\frac{\text{likelihood for null model}}{\text{likelihood for alternative model}}\right)$

• null model

WASHINGTON

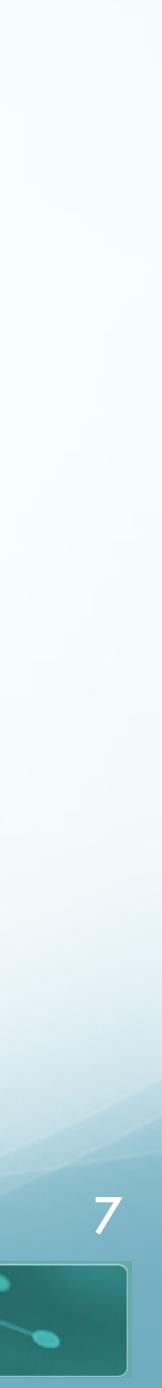
- the word w occurs **equally** in general as in topic
- alternative model
- the word w is **more salient** for the topic than in general

- $= \log(\text{likelihood for null model}) \log(\text{likelihood for alternative model})$

Refresher on Distribution

- We can think of a document collection X as a random variable
 - Our estimate for p(w) can be thought of as a sampling from X
 - (A summation of Bernoulli trials... did we see the word or not at position *i*? Yes or no.)
- We can thus also think of our counts for w as a **dependent variable**
 - Where the choice of document set is the *independent variable*

s for *w* as a **dependent variable** the **independent variable**

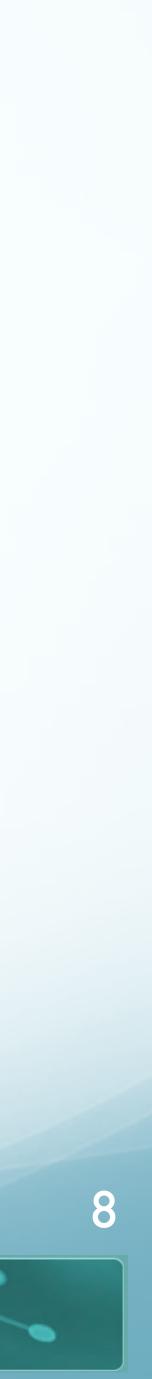


Refresher on Distribution

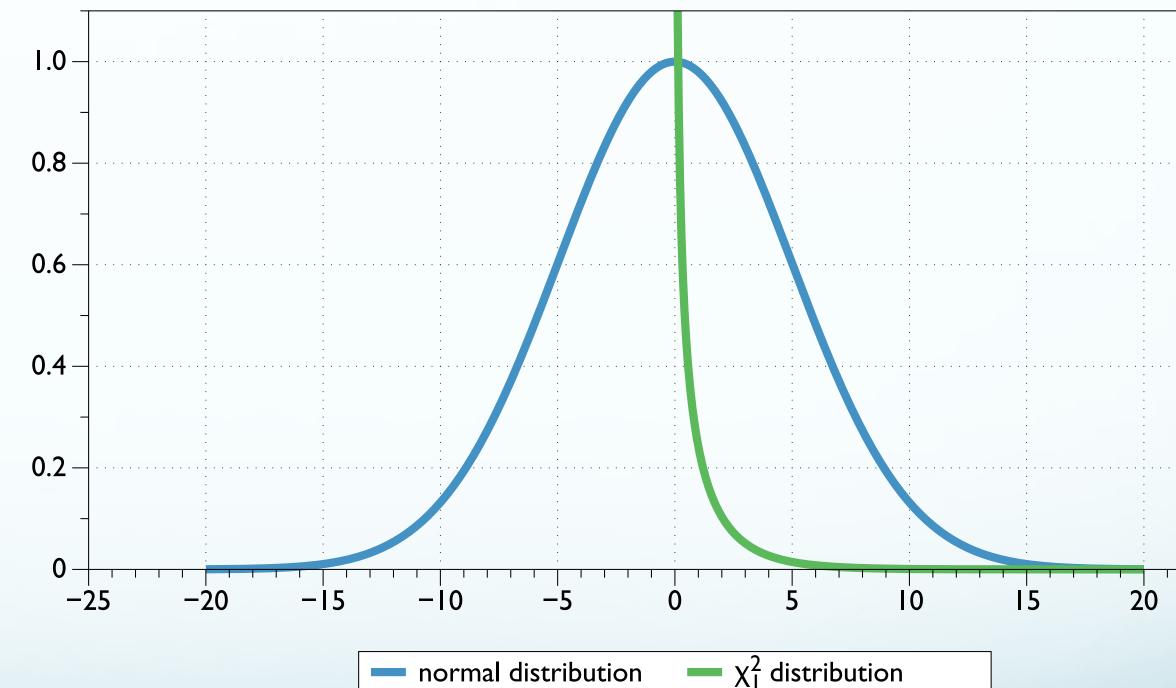
- Two document sets \rightarrow two independent variables, D_1 and D_2
- Hypotheses:

WASHINGTON

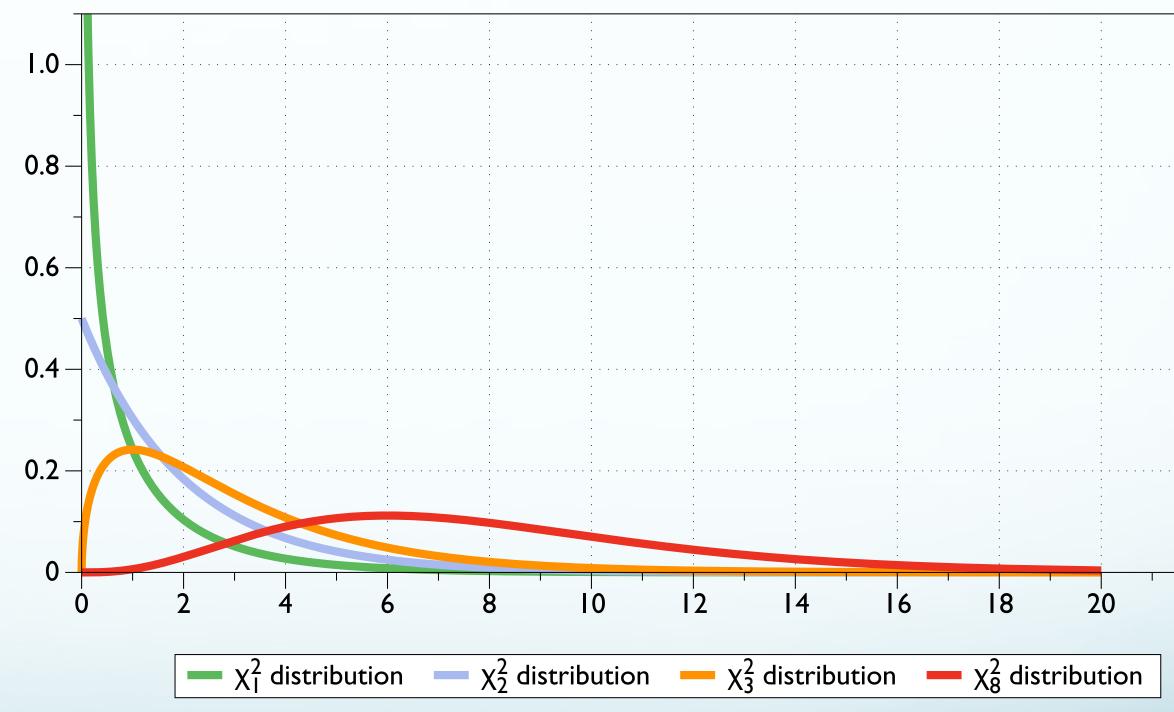
- $H_0 w$'s distribution behaves the same between choices of independent variable • $H_1 - w$'s distribution behaves differently between choices of independent variable
- We can reason about which hypothesis is more likely based upon:
 - How often do we **expect** to observe w in a document set?
 - How often do we **observe** w in a document set?



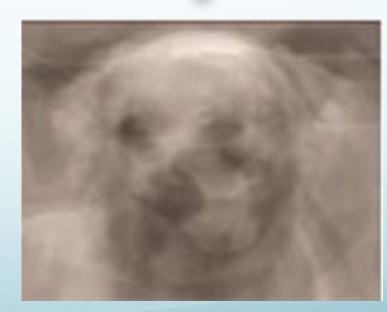
- A χ^2 distribution shows how likely it
 - is to find a proportion of samples some distance from the mean.
 - (Its values are only non-negative)
- One degree of freedom
 - 2 independent variables
 - the odds of sampling around the mean are high.



- The more degrees of freedom (different independent variables)
 - The more likely that something will deviate from the mean just by random fluctuation in the different variables



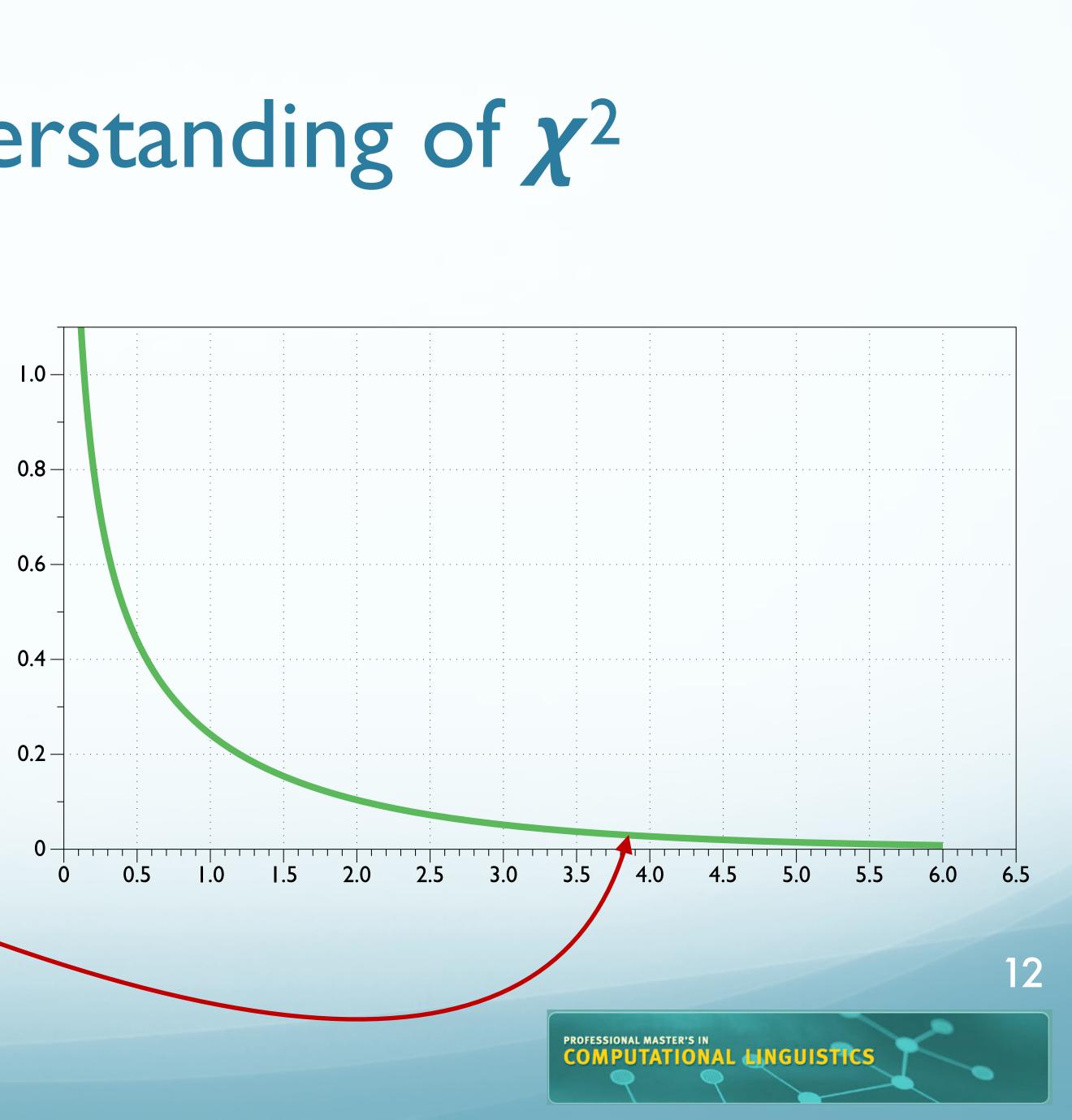
- This makes sense:
 - If the random variables are attributes of a dog:
 - Weight, Height, Leg Length, Torso Length, Tail Thickness, Fur Length, Ear Height
 - ...what is the likelihood that any given sample of "dog" will resemble the mean of all of these characteristics?



(via Kumar & Singh, 2014)



- Knowing the degrees of freedom for the problem, we can see the probability of a sampling that far off from the expected mean is.
- For I df, and χ^2 value 3.84
 - We have a 5% chance of getting a result this far off the norm
 - (a *p*-value of 0.05)



• w outside topic:

• $k_b = \text{count of } w$ outside topic

 n_b = total words outside topic

• w in topic:

- $k_t = ext{count of } w ext{ in topic}$
- $n_t = \text{total words in topic}$

• w overall:

- $k_o = \text{count of } w \text{ overall } (k_{\text{topic}} + k_{\text{background}})$
- $n_o = \text{total words overall } (n_{\text{topic}} + n_{\text{background}})$

WASHINGTON

$$p_b = \frac{k_b}{n_b}$$

$$p_t = \frac{k_t}{n_t}$$

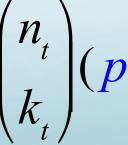
 n_o

- Likelihood of a model, from frame of word w
 - Product of prob p of seeing word w by times seen k
 - Product of seeing all other words in corpus of size n
 - ...times the number of ways this sequence could happen:

likelihood for alternative model = $\binom{n_t}{k_t}$

$$\binom{n_t}{k_t}$$

likelihood for null model = $\binom{n_t}{k_t}$



$$^{k_{t}} \cdot (1 - p_{t})^{(n_{t} - k_{t})} \cdot {\binom{n_{b}}{k_{b}}} (p_{b})^{k_{b}} \cdot (1 - p_{b})^{(n_{b} - k_{b})}$$

 p^k

 $(1-p)^{n-k}$

 $\langle n \rangle$

$$(p_{o})^{k_{t}} \cdot (1 - p_{o})^{(n_{t} - k_{t})} \cdot {\binom{n_{b}}{k_{b}}} (p_{o})^{k_{b}} \cdot (1 - p_{o})^{(n_{b} - k_{b})}$$

- Example: we see the word "train"
 - 10 times in a topic of 100 words
 - 2 times outside the topic, with 200 words

$$p_t = \frac{10}{100} = 0.10 \qquad p_b = \frac{2}{200}$$

--=0.01

 $p_o = \frac{12}{300} = 0.04$

Log Likelihood Ratio (LLR) — HI in-topic likelihood $\ln \left[\begin{pmatrix} 100\\10 \end{pmatrix} \cdot 0.10^{10} \cdot (1-10)^{10} \cdot (1-10)$

out-topic likelihood

$$\ln \left[\binom{200}{2} \cdot 0.01^2 \cdot (1 - 0.01)^{(200 - 2)} \right] = \ln \binom{200}{2} + 2 \cdot \ln(0.01) + 198 \cdot \ln(0.99) = -1.302$$

$$-0.10)^{(100-10)} = \ln \binom{100}{10} + 10 \times \ln(0.10) + 90 \times \ln(0.00) = -2.0259$$

Log Likelihood Ratio (LLR) — HO in-topic likelihood $\ln \left[\begin{pmatrix} 100\\10 \end{pmatrix} \cdot 0.04^{10} \cdot (1-1) \right]$

out-topic likelihood

$$\ln \left[\binom{200}{2} \cdot 0.04^2 \cdot (1 - 0.04)^{(200 - 2)} \right] = \ln \binom{200}{2} + 2 \cdot \ln(0.04) + 198 \cdot \ln(0.04) = -4.622$$

$$-0.04)^{(100-10)} = \ln \binom{100}{10} + 10 \times \ln(0.04) + 90 \times \ln(0.04) = -5.380$$

- LLR = LL for null model LL for alternative model = (-5.380 - 4.622) - (-2.026 - 1.302)= -6.675
- Using the base of e from the ln: $e^{-6.675} = 0.00126$
- Meaning the likelihood of the null hypothesis is (0.00126)×100 = 0.126% as likely as the alternative hypothesis

Significance testing LLR

- Significance tests, such as Chi-squared are typically used with LLR as well
- $-2 \times LLR$ is the test statistic used, called D, -2LL, or -2log λ
- Given that we had a distribution that could be represented by the contingency table:

Ins word w other word

• We can consider this to have one degree of freedom, and can use χ^2 table:

WASHINGTON

Confidence Value	0.995	0.99	0.975	0.95	0.9	0.1	0.05	0.025	0.01	0.005	0.001
Threshold	0	0	0	0	0.02	2.71	3.84	5.02	6.63	7.88	10.83

side Topic	Outside Topic
p_t	p_b
1 - p_t	1 - p_b

Significance testing LLR

• So for our example, $-2 \times -6.675 = 13.35$

Confidence Value	0.995	0.99	0.975	0.95	0.9	0.1	0.05	0.025	0.01	0.005	0.001
Threshold	0	0	0	0	0.02	2.71	3.84	5.02	6.63	7.88	10.83

• So our statistical significance is well above p < 0.001

"CLASSY" Conroy et al (2001, 2004, ...)

- "Clustering, Linguistics, and Statistics for Summarization Yield"
 - Conroy et al. 2000—2011 (<u>2001</u>, <u>2004</u>, <u>2006</u>)
- Highlights:
 - High performing system
 - Often rank I in DUC/TAC, commonly used comparison
 - Topic signature-type system (LLR)
 - Two approaches to content selection:
 - Matrix Decomposition
 - HMM
 - Redundancy handling

WASHINGTON

CLASSY

• Key assumption:

- Informitiveness of sentence is largely determined by number of salient words
- Best sentences for selection will be maximally informitive

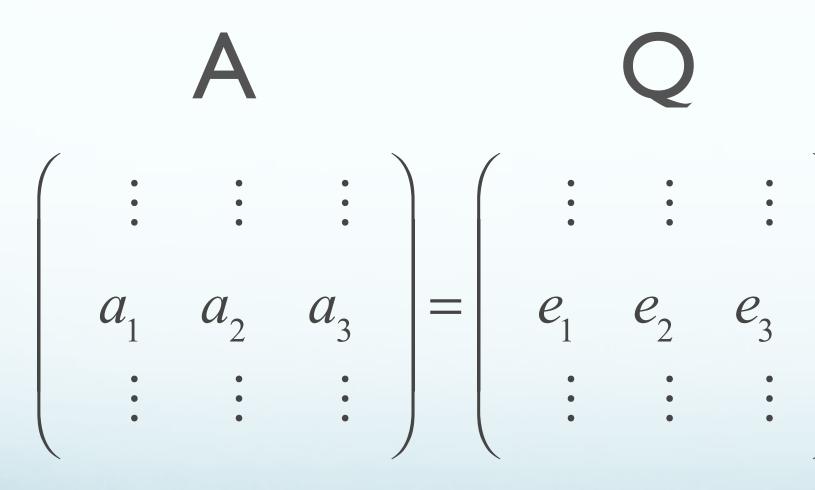
• Two approaches:

- Matrix decomposition
- HMM

letermined by number of salient words aximally informitive

CLASSY — Matrix Decomposition

- Frames content selection as a linear algebra problem
- Pivoted QR Decomposition
 - The columns of the **R** matrix end up representing the sentences ranked in order of importance



Original Matrix

WASHINGTON

Orthogonal **Unit Vectors**

$$\mathbf{R}$$

$$\begin{pmatrix} e_1^T \cdot a_1 & e_1^T \cdot a_2 & e_1^T \cdot a_3 \\ & e_2^T \cdot a_2 & e_2^T \cdot a_3 \\ & & e_3^T \cdot a_3 \end{pmatrix}$$

- Upper Diagonal Matrix

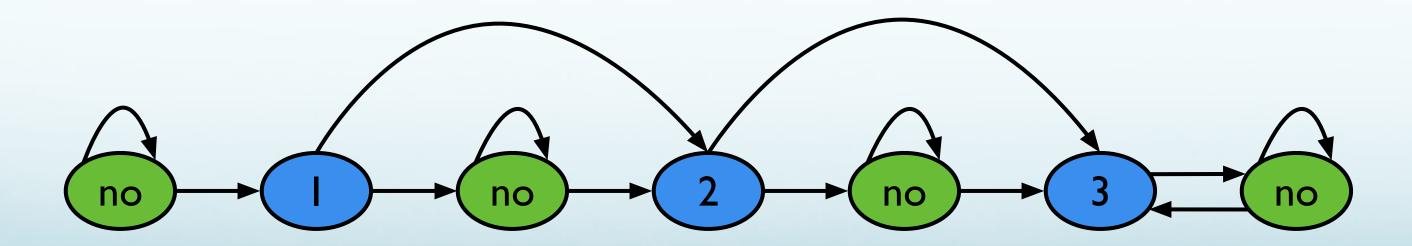
CLASSY — Matrix Decomposition

- Redundancy minimizing selection
- Create [term×sentence] matrix If term is in sentence, weight is nonzero
- Loop:
 - Select highest scoring sentence
 - Based on Euclidean norm (magnitude of sentence vector)
 - Subtract those components (representing terms) from remaining sentences
 - Until enough sentences
- Effect: selects highly ranked but different sentences
 - Relatively insensitive to weighting schemes

WASHINGTON

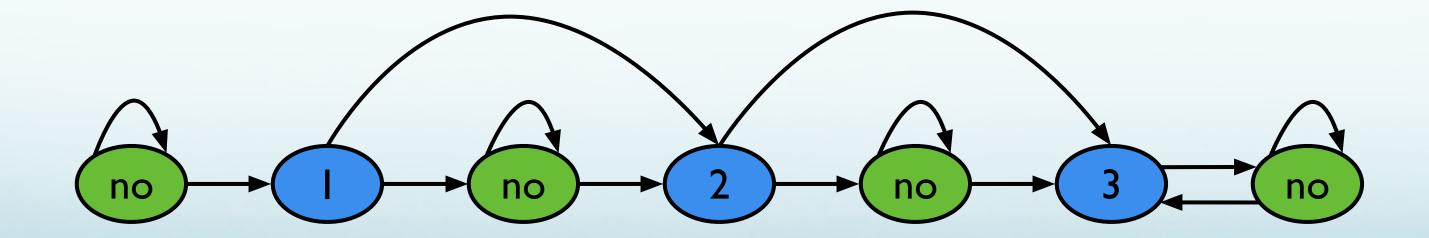
HMM Sentence Selection

- Intuition:
 - Summarization can be thought of as a sequence labeling task
 - Between labels that correspond to different "reasons" for inclusion or exclusion
 - Additionally captures positional information
 - How likely is a highly "contentful" sentence to be followed by one equally contentful?



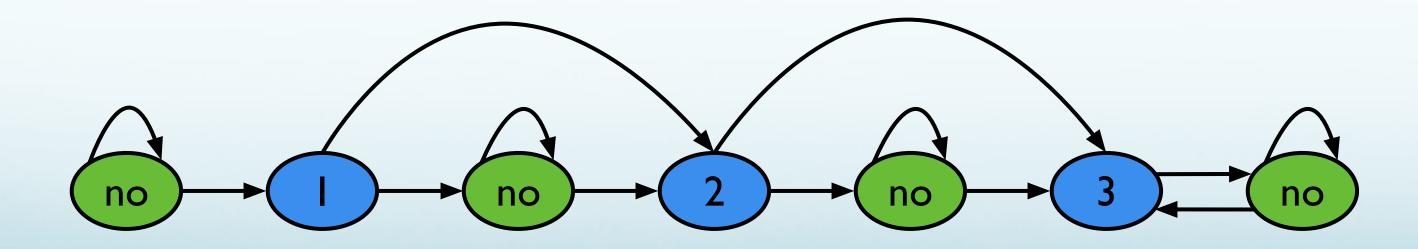
HMM Sentence Selection

- Features attempted for HMM:
 - Position of sentence in document
 - Position of sentence in paragraph
 - Number of terms in sentence
 - LLR



HMM Sentence Selection

- CLASSY strategy: Use LLR to represent sentences in HMM
 - Two **classes** of states (13 states total, "empirically determined")
 - **Include this sentence!**
 - Don't include this sentence.
 - Trained on human summaries of docsets
 - System must go through three "lead" states, then can loop.

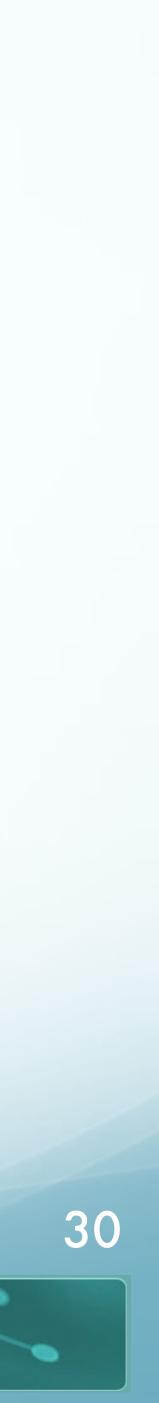


- Both HMM and Matrix method select sentences
- Can combine to further improve
- Approach:
 - Use HMM method to compute sentence scores
 - (e.g. rather than just weight based)
 - Incorporates context information, prior states
 - Loop:
 - Select highest scoring sentence
 - Update matrix scores
 - Exclude those with too low matrix scores
 - Until enough sentences are found

WASHINGTON

Other Linguistic Processing

- Sentence manipulation (before selection):
 - Remove uninteresting phrases based on POS tagging
 - Gerund clauses, appos, attrib, lead adverbs
- Coreference handling (<u>Serif</u> system)
 - Created coref chains initially
 - Replace all mentions with longest mention (# capital letters)
 - Used only for sentence selection



Outcomes

- HMM, Matrix: both effective, better combined
- Linguistic pre-processing improves
 - Best ROUGE-1, ROUGE-2 in DUC
- Coref handling improves
 - Best ROUGE-3, ROUGE-4; 2nd ROUGE-2

Discourse Structure for Content Selection

Discourse Relations

- Discourse relations:
 - Possible meaning relations between utterances in discourse
 - Examples:
 - **Result**: Infer state of **S**₀ causes state in **S**₁
 - The Tin Woodman was caught in the rain. His joints rusted.
 - **Explanation**: Infer state in **S**₁ caused state in **S**₀
 - John hid Bill's car keys. He was drunk.
 - **Elaboration**: Infer same prop. from **S**₀ and **S**₁.
 - Dorothy was from Kansas. She lived in the great Kansas prairie.

• Pair of locally coherent clauses: discourse segment

WASHINGTON



Discourse Structure for Content Selection

- Key Intuitions:
 - Different discourse relations have different relevance for inclusion in summary • e.g. elaboration likely less helpful than result or explanation
 - Structure Some information more "core"
 - nucleus vs. satellite, promotion, centrality

Rhetorical Structure Theory

- Mann & Thompson (1988)
- Goal: Identify hierarchical structure of text
 - Cover wide range of text types
 - Language contrasts
 - Relational propositions (intentions)
- Derives from functional relations b/t clauses

Components of RST

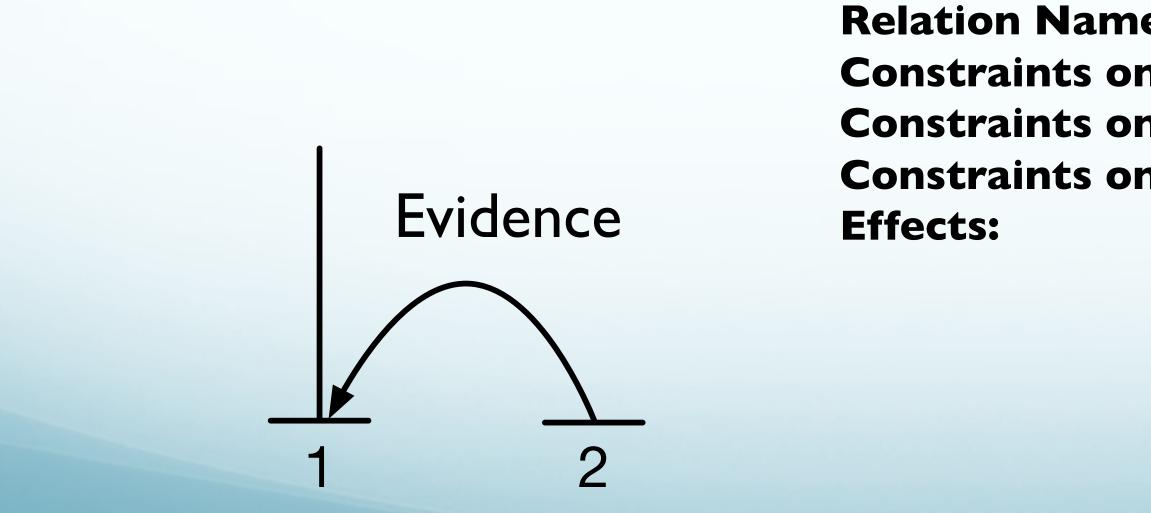
- Relations hold between two text spans, nucleus and satellite
 - Nucleus core element, satellite peripheral
 - Constraints on each, between
 - Units: Elementary discourse units (EDUs), e.g. clauses

RST Relations

Evidence

WASHINGTON

- The program really works. (N)
- I entered all my info and it matched my results. (S)



ne:	Evidence
n N:	R might not believe N to a degree satisfactory to W
n S:	R believes S or will find it credible
n N+S:	R's comprehending S increases R's belief of N R's belief of N is increased



RST Relations

- Core of RST
 - RST analysis requires building tree of relations
 - Relations include
 - Evidence, etc.
- Captured in:

 - RST parsers: <u>Marcu 1996</u>, <u>Feng and Hirst 2014</u>

• Circumstance, Solutionhood, Elaboration, Background, Enablement, Motivation,

<u>RST treebank</u>: corpus of WSJ articles with analysis (/corpora/LDC/LDC02T07 on Patas)

GraphBank

- Alternative discourse structure model
 - <u>Wolf & Gibson, 2005</u>
- Key difference:
 - Analysis of text need not be tree-structure, like RST
 - Can be arbitrary graph, allowing crossing dependencies
- Similar relations among spans (clauses)
 - Slightly different inventory

Penn Discourse Treebank

- PDTB (<u>Prasad et al, 2008</u>)
 - "Theory-neutral" discourse model
 - No stipulation of overall structure, identifies local relations only
- Two types of annotation:
 - Explicit lexical markers such as "because," "but," "while,"
 - Implicit No explicit lexical markers, more like RST examples
- Senses/Relations:

WASHINGTON

Comparison, Contingency, Expansion, Temporal...

Other Thoughts for Discourse

- Also useful for **information ordering**:
 - e.g. Make sure that nucleus is introduced before satellites
- **Realization**:
 - That sequential sentences are coherent, in additional to cohesive

- Compare these, contrast, with lexical info alone
 - Louis et al, 2010

More About Discourse

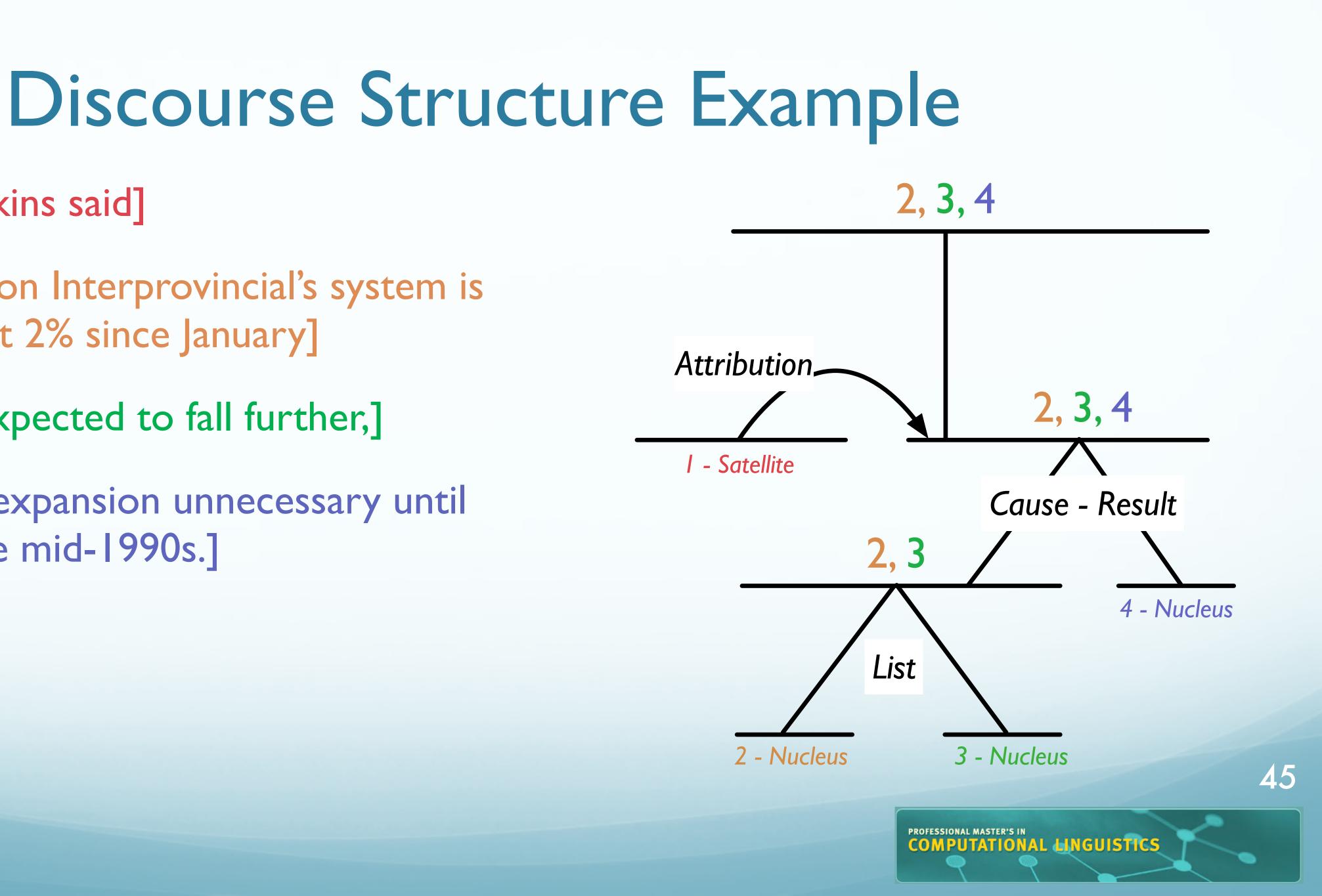
Framework

- Association with extractive summary sentences
 - Statistical analysis
 - χ^2 (categorical) t-test (continuous)
- Classification:
 - Logistic regression
 - Different ensembles of features
 - Classification F-measure
 - ROUGE over summary sentences

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text \rightarrow parse
- Discourse structure
 - RST trees
 - Fine-grained, hierarchical structure
 - Clause-based units

RST Parsing

- I. [Mr. Watkins said]
- 2. [volume on Interprovincial's system is down about 2% since [anuary]
- 3. [and is expected to fall further,]
- 4. [making expansion unnecessary until perhaps the mid-1990s.]



Discourse Structure Features

Satellite penalty

- For each EDU number of satellite nodes between EDU and root
 - I satellite in tree: one step to root: penalty = I

• **Promotion set**:

- Nuclear units at some level of tree
 - At leaves, EDUs are themselves nuclear

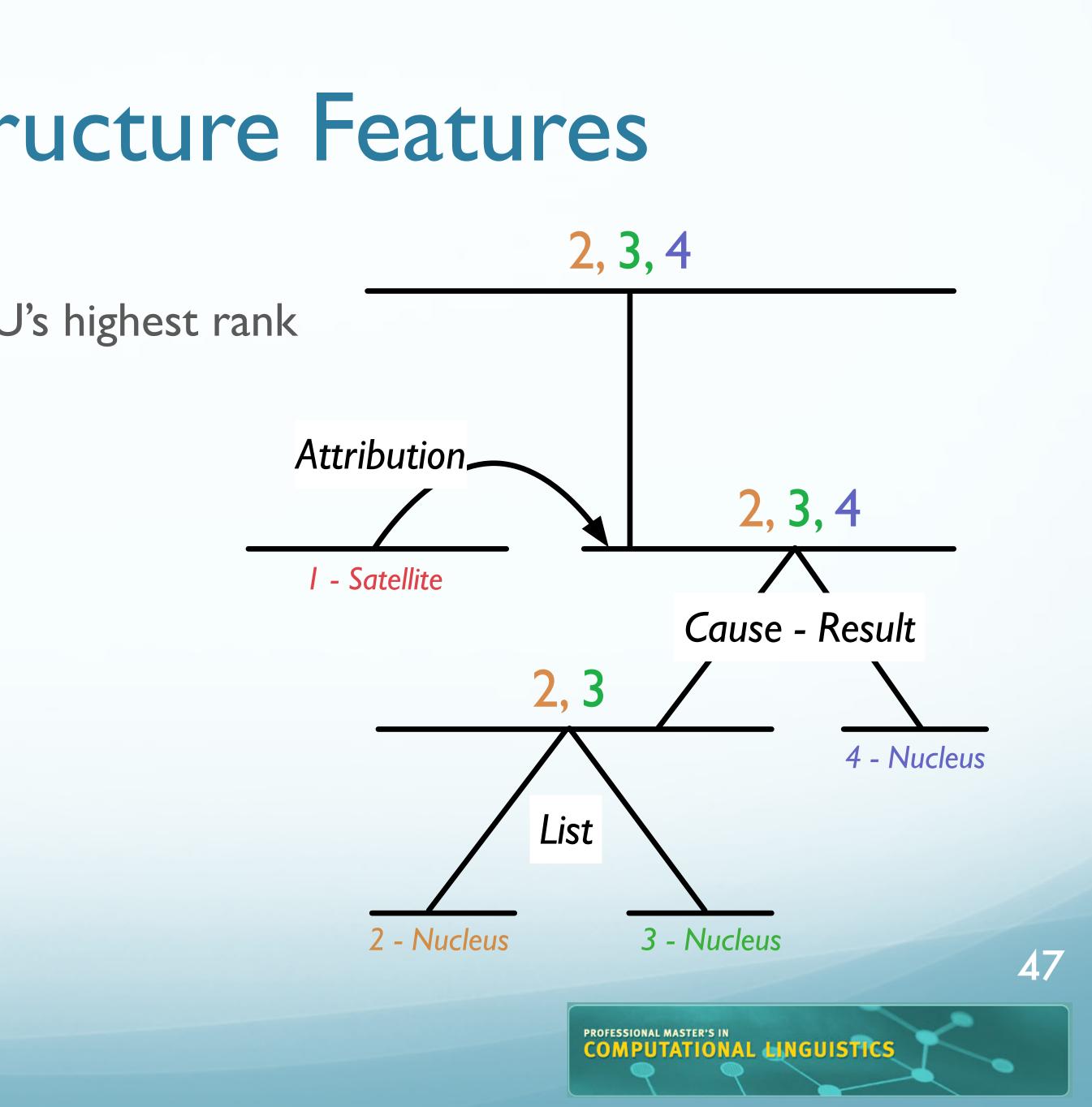
Discourse Structure Features

• **Depth score**:

- Distance from lowest tree level to EDU's highest rank
 - 2,3,4: score=4
 - :score=3

• **Promotion score**:

- # of levels span is promoted
 - : score = 0



Converting to Sentence Level

- Each feature has:
 - Raw score
 - Normalized score:

raw score sentence length

- Sentence score for a feature:
 - Maximum value over all EDUs in sentence

"Semantic" Features

- Capture specific relations on spans
- Binary features over tuple of:
 - Implicit vs. Explicit
 - Name of relation between units
 - If a relation exists between sentences:
 - Whether sentence is Arg1 or Arg2
- Also:
 - Number of relations
 - Distance between arguments within sentence

WASHINGTON



- software.
- Is there an explicit discourse marker? • Yes, "**so**"
- Discourse relation?
 - **Contingency**

Example 1

• In addition, its machines are easier to operate, so customers require less assistance from

Example 11

- Is there an explicit discourse marker? No
- Is there a relation?
 - Yes, Implicit.
- What relation?

WASHINGTON

• **Expansion**. (More specifically, restatement).

• (1) Wednesday's dominant issue was Yasuda & Marine Insurance, which continued to surge on rumors of speculative buying. (2) It ended the day up 80 yen to 1880 yen.

Non-Discourse Features

- Typical Features
 - Sentence length
 - Sentence position
 - Probabilities of words in sentence: mean, sum, product
 - # of signature words (LLR)

Significant Features: Summary Sentences

- Structure:
 - depth score
 - promotion score
- Semantic:
 - Argl of Explicit Expansion
 - Implicit Contingency
 - Implicit Expansion
 - Distance to Arg

- Non-discourse:
 - length
 - Ist in paragraph
 - offset from end of paragraph
 - # signature terms
 - mean
 - sum word probabilities

Significant Features: Non-Summary Sentences

- Structure:
 - satellite penalty
- Semantic:
 - Explicit expansion
 - Explicit contingency
 - Arg2 of implicit temporal
 - Arg2 of implicit contingency
 - # of shared relations

• Non-discourse:

- offset from paragraph start
- offset from article start
- sentence probability

Observations

- Non-discourse features good cues to summary
- Structural features match intuition
- Semantic features
 - Relatively few useful features for selecting summaries

• Most features associated with non-summary... but most sentences are non-summary

Evaluation

- Structural is best, both alone and in combination
- Best overall combines all types
- Both F₁ and ROUGE

Features used structural semantic non-discourse (ND) ND + semantic ND + structural semantic + structural structural + semantic + ND

Acc	Ρ	R	F
78.11	63.38	22.77	33.50
75.53	44.31	5.04	9.05
77.25	67.48	11.02	18.95
77.38	59.38	20.62	30.61
78.51	63.49	26.05	36.94
77.94	58.39	30.47	40.04
78.93	61.85	34.42	44.23

