Discourse and Summarization

LING 573 — Systems and Applications
April 12th, 2018
Begin Recording!
Miscellanea
What is a Centroid?

- Way to define the “middle” of a cluster
- In document clustering setting, centroid often:
 - Vector representation of “model” document
 - highest similarity to the most other documents in the cluster
- Can also be a “pseudo-document”
 - Words picked from all documents rather than single document
What Does a MEAD Centroid Look Like?

- As computed by CIDR clustering algorithm
- **R code on Github**

- Single-pass clustering
 - Filter words based on their tf*idf
 - N best +/- above word threshold
 - Join with new cluster if above cluster similarity threshold

<table>
<thead>
<tr>
<th>word</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>suharto</td>
<td>2.48</td>
</tr>
<tr>
<td>jakarta</td>
<td>0.58</td>
</tr>
<tr>
<td>habibie</td>
<td>0.47</td>
</tr>
<tr>
<td>students</td>
<td>0.45</td>
</tr>
<tr>
<td>student</td>
<td>0.22</td>
</tr>
<tr>
<td>protesters</td>
<td>0.20</td>
</tr>
<tr>
<td>asean</td>
<td>0.11</td>
</tr>
<tr>
<td>campuses</td>
<td>0.05</td>
</tr>
<tr>
<td>geertz</td>
<td>0.04</td>
</tr>
<tr>
<td>medan</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>suharto</td>
<td>2.61</td>
</tr>
<tr>
<td>jakarta</td>
<td>0.58</td>
</tr>
<tr>
<td>habibie</td>
<td>0.53</td>
</tr>
<tr>
<td>students</td>
<td>0.43</td>
</tr>
<tr>
<td>student</td>
<td>0.21</td>
</tr>
<tr>
<td>protesters</td>
<td>0.19</td>
</tr>
<tr>
<td>asean</td>
<td>0.10</td>
</tr>
<tr>
<td>campuses</td>
<td>0.04</td>
</tr>
<tr>
<td>geertz</td>
<td>0.04</td>
</tr>
<tr>
<td>medan</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Figure 1: Centroid for cluster 44 (the two scores are after 10,000 (left) and all 22,443 documents (right).
LexRank Revisited

- Begin by computing cosine similarity matrix between sentences in cluster

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.45</td>
<td>0.02</td>
<td>0.17</td>
<td>0.03</td>
<td>0.22</td>
<td>0.03</td>
<td>0.28</td>
<td>0.06</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.45</td>
<td>1.00</td>
<td>0.16</td>
<td>0.27</td>
<td>0.03</td>
<td>0.19</td>
<td>0.03</td>
<td>0.21</td>
<td>0.03</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.16</td>
<td>1.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.17</td>
<td>0.27</td>
<td>0.03</td>
<td>1.00</td>
<td>0.01</td>
<td>0.16</td>
<td>0.28</td>
<td>0.17</td>
<td>0.00</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>1.00</td>
<td>0.29</td>
<td>0.05</td>
<td>0.15</td>
<td>0.20</td>
<td>0.04</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>0.22</td>
<td>0.19</td>
<td>0.01</td>
<td>0.16</td>
<td>0.29</td>
<td>1.00</td>
<td>0.05</td>
<td>0.29</td>
<td>0.04</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.28</td>
<td>0.05</td>
<td>0.05</td>
<td>1.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.28</td>
<td>0.21</td>
<td>0.04</td>
<td>0.17</td>
<td>0.15</td>
<td>0.29</td>
<td>0.06</td>
<td>1.00</td>
<td>0.25</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>9</td>
<td>0.06</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.04</td>
<td>0.00</td>
<td>0.25</td>
<td>1.00</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
<td>0.15</td>
<td>0.01</td>
<td>0.09</td>
<td>0.04</td>
<td>0.20</td>
<td>0.00</td>
<td>0.20</td>
<td>0.26</td>
<td>1.00</td>
<td>0.12</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.18</td>
<td>0.03</td>
<td>0.01</td>
<td>0.17</td>
<td>0.38</td>
<td>0.12</td>
<td>1.00</td>
</tr>
</tbody>
</table>
```
LexRank Revisited

- Use these initial weights to build a graph between sentences
- Cosine similarity sets weights of edges
LexRank Revisited

- Next step: compute node ranks:
 - What we want is ultimately a vector, where each element is the score for our node
 - This is the eigenvector of our weight matrix
 - Represents stable distribution of markov chain
LexRank Revisited

- Use Power Method: series of matrix transformations:
 - Start with initial guess for eigenvector x
 - Calculate $w = Ax$ [w is new matrix]
 - Largest magnitude column in w is estimate of eigenvalue
 - Re-scale w by eigenvalue to get next guess for eigenvector x
 - Repeat until convergence
Example of power method converging toward approximation

<table>
<thead>
<tr>
<th>$A_z^{(4)}$</th>
<th>2 8 10</th>
<th>0.9243</th>
<th>17.513</th>
<th>0.9181</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 3 4</td>
<td>0.7080</td>
<td>13.519</td>
<td>0.7087</td>
</tr>
<tr>
<td></td>
<td>10 4 7</td>
<td>1.0</td>
<td>19.075</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A_z^{(5)}$</th>
<th>2 8 10</th>
<th>0.9181</th>
<th>17.506</th>
<th>0.9206</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 3 4</td>
<td>0.7087</td>
<td>13.471</td>
<td>0.7084</td>
</tr>
<tr>
<td></td>
<td>10 4 7</td>
<td>1.0</td>
<td>19.016</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A_z^{(6)}$</th>
<th>2 8 10</th>
<th>0.9206</th>
<th>17.508</th>
<th>0.9196</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 3 4</td>
<td>0.7084</td>
<td>13.490</td>
<td>0.7085</td>
</tr>
<tr>
<td></td>
<td>10 4 7</td>
<td>1.0</td>
<td>19.040</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A_z^{(7)}$</th>
<th>2 8 10</th>
<th>0.9196</th>
<th>17.507</th>
<th>0.9200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 3 4</td>
<td>0.7085</td>
<td>13.482</td>
<td>0.7085</td>
</tr>
<tr>
<td></td>
<td>10 4 7</td>
<td>1.0</td>
<td>19.030</td>
<td>1.0</td>
</tr>
</tbody>
</table>
LexRank Revisited

- Example of power method converging toward approximation

\[
\begin{bmatrix}
2 & 8 & 10 \\
8 & 3 & 4 \\
10 & 4 & 7 \\
\end{bmatrix}
\begin{bmatrix}
0.9243 \\
0.7080 \\
1.0 \\
\end{bmatrix}
=
\begin{bmatrix}
17.513 \\
13.519 \\
19.075 \\
\end{bmatrix}
= (19.075) \\
\begin{bmatrix}
0.9181 \\
0.7087 \\
1.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 8 & 10 \\
8 & 3 & 4 \\
10 & 4 & 7 \\
\end{bmatrix}
\begin{bmatrix}
0.9181 \\
0.7087 \\
1.0 \\
\end{bmatrix}
=
\begin{bmatrix}
17.506 \\
13.471 \\
19.016 \\
\end{bmatrix}
= (19.016) \\
\begin{bmatrix}
0.9206 \\
0.7084 \\
1.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 8 & 10 \\
8 & 3 & 4 \\
10 & 4 & 7 \\
\end{bmatrix}
\begin{bmatrix}
0.9206 \\
0.7084 \\
1.0 \\
\end{bmatrix}
=
\begin{bmatrix}
17.508 \\
13.490 \\
19.040 \\
\end{bmatrix}
= (19.040) \\
\begin{bmatrix}
0.9196 \\
0.7085 \\
1.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 8 & 10 \\
8 & 3 & 4 \\
10 & 4 & 7 \\
\end{bmatrix}
\begin{bmatrix}
0.9196 \\
0.7085 \\
1.0 \\
\end{bmatrix}
=
\begin{bmatrix}
17.507 \\
13.482 \\
19.030 \\
\end{bmatrix}
= (19.030) \\
\begin{bmatrix}
0.9200 \\
0.7085 \\
1.0 \\
\end{bmatrix}
\]
LexRank Revisited

- Don’t worry, we don’t expect you to have linear algebra nailed!
LexRank Demo

- Link to LexRank Demo: http://clair.si.umich.edu/demos/lexrank/
Experimental Setup

- Design different features, both *discourse-related* and *non-discourse*
 - Using model summaries (human-generated)
 - Perform statistical significance tests on included vs. non-included sentences
 - χ^2 (categorical) t-test (continuous)
 - Use features in logistic regression classifier (MaxEnt)
 - Use to select sentences for extraction
- Evaluation:
 - F_1 against model sentences
 - ROUGE over summary sentences
Experimental Setup

- Caveat:
 - Experimental approach is using human-created discourse analyses
 - Authors do not attempt using automatic discourse parsers for analyses
 - Purely a study of how well discourse features correlate in an idealized setting
How Would This be Applied?

- Learn and apply classifiers for segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text \(\rightarrow \) parse
- Use parsed representations as features in classifier for content selection
Discourse (RST) Structure Example

1. [Mr. Watkins said]
2. [volume on Interprovincial’s system is down about 2% since January]
3. [and is expected to fall further,]
4. [making expansion unnecessary until perhaps the mid-1990s.]
Discourse Structure Features

- **Satellite penalty**
 - For each EDU — number of satellite nodes between EDU and root
 - 1 satellite in tree: one step to root: penalty = 1
 - **Intuition**: Helpful summary content will be closely related to nucleus.
Discourse Structure Features

- **Promotion set:**
 - Nuclear units at some level of tree
 - At leaves, EDUs are themselves nuclear
 - Intuition:
 - The more times a unit is promoted in the tree, the more necessary its concepts to understanding the whole discourse
Discourse Structure Features

- **Depth score:**
 - Distance from lowest tree level to EDU’s highest rank
 - 2, 3, 4: score = 4
 - 1: score = 3

- **Promotion score:**
 - # of levels span is promoted
 - 1: score = 0
 - 4: score = 2
 - 2, 3: score = 3
Converting to Sentence Level

- Each feature has:
 - Raw score
 - Normalized score: \(\frac{\text{raw score}}{\text{sentence length}} \)

- Sentence score for a feature:
 - Maximum value over all EDUs in sentence
“Semantic” Features

- Represent sentences purely in terms of their discourse relationships

- **Binary features:**
 - Implicit vs. Explicit
 - `sentence_in_{RELATION_NAME}`
 - `sentence_contains_{ARG1|ARG2}_of_{RELATION_NAME}` (multi-sentential)
 - `sentence_expresses_{RELATION_NAME}` (both args in single sent)

- **Real-valued features:**
 - Number of relations
 - Distance between arguments within sentence
Example 1

- *In addition, its machines are easier to operate, so customers require less assistance from software.*

- Is there an explicit discourse marker?
 - Yes, “so”

- Discourse relation?
 - Contingency
Example 11

● (1) Wednesday’s dominant issue was Yasuda & Marine Insurance, which continued to surge on rumors of speculative buying. (2) It ended the day up 80 yen to 1880 yen.

● Is there an explicit discourse marker?
 ● No

● Is there a relation?
 ● Yes, Implicit.

● What relation?
 ● Expansion. (More specifically, restatement).
Non-Discourse Features

- Sentence length
- Sentence position
- Probabilities of words in sentence
 - mean, sum, product
- # of signature words (LLR)
Statistical Analysis
Statistical Analysis

- Used model summaries to analyze whether features were predictive
 - for a given feature-sent pair in docset…
 - How likely was that sentence to appear in summary?
Significant Features: Summary Sentences

- **Structure:**
 - depth score
 - promotion score

- **Semantic:**
 - Arg1 of Explicit Expansion
 - Arg1 of Implicit Contingency
 - Arg1 of Implicit Expansion
 - Distance to other Argument

- **Non-discourse:**
 - length
 - 1st sent in article
 - 1st sent in paragraph
 - offset from paragraph end
 - # signature terms
 - mean content word probabilities
 - sum content word probabilities

All VERY small p-values
Significant Features: Non-Summary Sentences

- **Structure:**
 - satellite penalty

- **Semantic:**
 - expresses explicit expansion
 - expresses explicit contingency
 - Arg2 of implicit temporal
 - Arg2 of implicit expansion
 - Arg2 of implicit contingency
 - # of shared implicit relations
 - total shared relations

- **Non-discourse:**
 - offset from paragraph start
 - offset from article start
 - sentence probability
Observations

- Non-discourse features good cues to summary
- Structural features match intuition
- Semantic features
 - Relatively few useful features for selecting summaries
 - Most features associated with non-summary… but most sentences are non-summary
Evaluation

- Structural is best, both alone and in combination
- Best overall combines all types
- Both F_1 and ROUGE-1

<table>
<thead>
<tr>
<th>Features used</th>
<th>Acc</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>structural</td>
<td>78.11</td>
<td>63.38</td>
<td>22.77</td>
<td>33.50</td>
</tr>
<tr>
<td>semantic</td>
<td>75.53</td>
<td>44.31</td>
<td>5.04</td>
<td>9.05</td>
</tr>
<tr>
<td>non-discourse (ND)</td>
<td>77.25</td>
<td>67.48</td>
<td>11.02</td>
<td>18.95</td>
</tr>
<tr>
<td>ND + semantic</td>
<td>77.38</td>
<td>59.38</td>
<td>20.62</td>
<td>30.61</td>
</tr>
<tr>
<td>ND + structural</td>
<td>78.51</td>
<td>63.49</td>
<td>26.05</td>
<td>36.94</td>
</tr>
<tr>
<td>semantic + structural</td>
<td>77.94</td>
<td>58.39</td>
<td>30.47</td>
<td>40.04</td>
</tr>
<tr>
<td>structural + semantic + ND</td>
<td>78.93</td>
<td>61.85</td>
<td>34.42</td>
<td>44.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>ROUGE</th>
<th>Features</th>
<th>ROUGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>structural + semantic + ND</td>
<td>0.479</td>
<td>ND</td>
<td>0.432</td>
</tr>
<tr>
<td>structural + ND</td>
<td>0.468</td>
<td>LEAD</td>
<td>0.411</td>
</tr>
<tr>
<td>structural + semantic</td>
<td>0.453</td>
<td>semantic</td>
<td>0.369</td>
</tr>
<tr>
<td>semantic + ND</td>
<td>0.444</td>
<td>TS</td>
<td>0.338</td>
</tr>
<tr>
<td>structural</td>
<td>0.433</td>
<td>*TS = “topic signature”</td>
<td></td>
</tr>
</tbody>
</table>
Graph-Based Comparison

- Page-Rank Based Centrality Computed Over
 - RST Link Structure
 - Graphbank Link Structure
 - LexRank (sentence cosine similarity)

- Quite similar, but:
 - F_1: LR > GB > RST
 - ROUGE: RST > LR > GB

<table>
<thead>
<tr>
<th></th>
<th>Acc</th>
<th>P</th>
<th>R</th>
<th>F</th>
<th>ROUGE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST-struct</td>
<td>81.61</td>
<td>63.00</td>
<td>31.56</td>
<td>42.05</td>
<td>0.569</td>
</tr>
<tr>
<td>GB-struct</td>
<td>82.58</td>
<td>62.50</td>
<td>39.16</td>
<td>48.15</td>
<td>0.508</td>
</tr>
<tr>
<td>LEX-struct</td>
<td>83.23</td>
<td>75.17</td>
<td>41.14</td>
<td>53.18</td>
<td>0.557</td>
</tr>
</tbody>
</table>
Notes

- Single document, short (100 word) summaries
 - What about multi-document? Longer?

- Structure relatively better

- Manually labeled discourse structure, relations
 - Some automatic systems available, but not perfect
 - Better at getting the structure than the exact relation
 - Especially implicit
Topic Orientation & Optimization
Topic-Focused Summarization

- “Query-focused” or “Guided”
- Extrinsic task vs. generic:
 - Why are we creating this summary?
 - Viewed as complex question answering (vs. factoid)
- High variation in human summaries
 - Depending on perspective, different content is focused
Topic-Focused Summarization: Key Idea

- Target response to specific question, topic in documents
- Later TACs identify topic categories and aspects
 - e.g. Natural disasters: who, what, where, when
When treated as a factoid/sentence selection problem:

- Mean Rank Reciprocal (MRR)
 - Inverse of rank of correct answer
- Total Reciprocal Document Rank (TRDR)
 - Total of all reciprocal ranks of all answers system suggests
 - (Usually taken as average)
Query-Focused LexRank

Otterbacher et al (2005)

- Focus on sentences relevant to query
- Rather than computing similarity of sentences to all other sentences

How do we measure relevance?

- tf*idf-like measure over sentences & query
- Compute sentence-level “idf_w”
- \(N = \# \) of sentences in cluster
- \(idf_w = \log \left(\frac{N + 1}{0.5 + sf_w} \right) \)
- \(sf_w = \# \) of sentences with \(w \)
Query-Focused LexRank

Otterbacher et al (2005)

\[rel(s | q) = \sum_{w \in q} \log(tf_{w,s} + 1) \cdot \log(tf_{w,q} + 1) \cdot idf_w \]

- Relevance of sentence \(s \) given query \(q \)
- Log Sum (Product) of:
 - term frequency for word \(w \) in sentence
 - term frequency for word \(w \) in query
 - \(idf_w \) for word across all sentences
Updated LexRank Model

- Combines original similarity weighting with query
- Mixture model of query relevance, sentence similarity (LexRank)

\[p(s \mid q) = d \frac{\text{rel}(s \mid q)}{\sum_{z \in C} \text{rel}(z \mid q)} + (1 - d) \left(\sum_{v \in C} \frac{\text{sim}(s, v)}{\sum_{z \in C} \text{sim}(z, v)} \cdot p(v \mid q) \right) \]

- \(d \) controls “bias”: i.e. relative weighting toward query relevance
Tuning & Assessment

- Parameters:
 - **Similarity threshold**: filters adjacency matrix
 - **Question bias**: Weights emphasis on question focus

- Empirical results:
 - Best similarity threshold: 0.14–0.2
 - Best question bias: high: 0.8–0.95
 - Higher question bias in LexRank improves MRR
Other Strategies

- Methods depend on base system design
 - All aim to incorporate similarity with query/topic

- CLASSY HMM (Conroy et al., 2005):
 - Add question overlap feature to HMM vector — $\log(#_query_tokens_in_sentence + 1)$
 - Query tokens: filtered to NN, VB, JJ, RB, or NNP

- FastSum (Schilder & Kondadadi, 2008):
 - SVM regression on sentences
 - Adds topic title frequency feature:
 - Proportion of words in sent which appear in title

- Others: require minimum number of topic words
Overview

- Many similar strategies:
 - Features, weighting, ranking: overlap based

- Actual evaluation impact:
 - Not necessarily very large (e.g. 0.003 ROUGE)
 - But can be useful

- Aggressive approaches can have large negative impact
 - i.e. explicitly adding NER spans
Optimization Approaches to Reducing Redundancy
Optimization Approaches to Reducing Redundancy

- DPP: Determinantal Point Processes [python GH] (Kulesza & Taskar 2012)
 - Set models balancing information importance w/diversity

 - Optimizes coverage of key bigrams weighted by document frequency

- OCCAMS_V (Davis et al, 2012)
 - Uses LSA (Latent Semantic Analysis) to weight terms
 - Sentence selection via optimization problems:
 - Budgeted maximal coverage; knapsack
ICSISumm

Key ideas:
- Cast summarization as optimization problem
- Identify important “concepts” to incorporate
- Build best such summary
- Implemented as Integer Linear Programming
Integer Linear Programming

- Aka ILP

- An integer linear program specifies
 - A single linear maximization term
 - Subject to linear equality/inequality constraints
 - Involving integer valued variables

- For summarization:
 - Map summary requirements to ILP elements
Summarization as ILP

- **Summary goal:**
 - “Best” summary

- **Summary requirements:**
 - Minimize redundancy
 - Within desired length

- **Maximization term:**
 \[
 \sum_i W_i C_i
 \]

- **Implicit:**
 - Length Constraint
 \[
 \sum_j l_j s_j < L
 \]
 - Coverage Constraint
 \[
 \sum_j s_j o_{ij} \geq c_i \forall i
 \]
 \[
 s_j o_{ij} \leq c_i \forall i, j
 \]

Weight
Representing Concepts

- Concepts = Bigrams
 - Stemmed
 - No stopword-only bigrams
 - Occuring in at least 3 documents

- Weights
 - Document frequency
 - # Of Documents (from cluster) for bigram

- Selected sentences must contain ≥ 2 query terms
Results

- After using open source solver

- 2009 results:
 - 2nd best pyramid, ROUGE-2
 - Best ROUGE-3, ROUGE-4