
Dependency Grammars and Parser
LING 571 — Deep Processing for NLP

October 17, 2018
Ryan Georgi

�1

Announcements:
● Compiled evalb for MacOS on Canvas:

● https://canvas.uw.edu/files/51379663/download?download_frd=1

�2

http://www.apple.com

PCKY Algorithm

�3

function PROBABILISTIC-CKY-PARSE(words, grammar) returns most probable parse and its probability
for j ← from 1 to LENGTH(words) do 
 for all { A | A → words[j] ∈ grammar }
 table[j–1, j, A] ← P(A → words[j])
for i ← from j–2 downto 0 do
for k ← i + 1 to j–1 do
for all { A | A → B C ∈ grammar,
 and table[i, k, B] > 0 and table[k, j, C] > 0 }
if (table[i, j, A] < P(A → BC)×table[i, k, B]×table[k,j,C]) then
 table[i, j, A] ← P(A → BC)×table[i,k,B]×table[k,j,C]
 back[i, j, A] ← { k, B, C }
return BUILD_TREE(back[1, LENGTH(words), S]), table[1,LENGTH(words), S]

Notes On HW #4

�4

0 Det → "the" [-0.693] NP → 0Det1N2 [-1.897](0,0) S → 0NP2VP5 [-4.528](0,0) S → 0NP2VP8 [-8.610](0,0)

1 N → "dog" [-0.916]

2 V → "chased" [-0.511] VP → 2V3NP5 [-2.631](0,0) VP → 2V3NP8 [-6.713](0,0)

3 Det → "a" [-0.693] NP → 3Det4N5 [-1.897](0,0) NP → 3NP5PP8 [-5.979](0,0)

4 N → "cat" [-0.916]

5 P → "on" [-0.105] PP → 5P6NP8 [-2.696](0,0)

6 Det → "the" [-0.693] NP → 6Det7N8 [-2.590]
(0,0)

7 N → "mat" [-1.609]

8

S → NP VP [1.0]
PP → P NP [1.0]
NP → Det N [0.75]
NP → NP PP [0.25]
VP → V NP [0.8]
VP → VP PP [0.2]
Det → ‘a’ [0.5]
Det → ‘the’ [0.5]
N → ‘dog’ [0.4]
N → ‘cat’ [0.4]
N → ‘mat’ [0.2]
V → ‘chased’ [0.6]
V → ‘sat’ [0.4]
P → ‘on’ [0.9]
P → ‘in’ [0.1]

“the dog chased the cat on the mat”

Notes On HW #4

�5

0 Det → "the" [-0.693] NP → 0Det1N2 [-1.897](0,0) S → 0NP2VP5 [-4.528](0,0) S → 0NP2VP8 [-8.610](0,0)

S → 0NP2VP8 [-8.833](0,1)

1 N → "dog" [-0.916]

2 V → "chased" [-0.511] VP → 2V3NP5 [-2.631](0,0) VP → 2V3NP8 [-6.713](0,0)

VP → 2VP5PP8 [-6.936](0,0)

3 Det → "a" [-0.693] NP → 3Det4N5 [-1.897](0,0) NP → 3NP5PP8 [-5.979](0,0)

4 N → "cat" [-0.916]

5 P → "on" [-0.105] PP → 5P6NP8 [-2.696](0,0)

6 Det → "the" [-0.693] NP → 6Det7N8 [-2.590]
(0,0)

7 N → "mat" [-1.609]

8

S → NP VP [1.0]
PP → P NP [1.0]
NP → Det N [0.75]
NP → NP PP [0.25]
VP → V NP [0.8]
VP → VP PP [0.2]
Det → ‘a’ [0.5]
Det → ‘the’ [0.5]
N → ‘dog’ [0.4]
N → ‘cat’ [0.4]
N → ‘mat’ [0.2]
V → ‘chased’ [0.6]
V → ‘sat’ [0.4]
P → ‘on’ [0.9]
P → ‘in’ [0.1]

“the dog chased the cat on the mat”

Notes On HW #4

�6

S<8ӳ61>
NP<1ӳ9>

Det<0ӳ693>
the

N<0ӳ916>
dog

VP<6ӳ71>
V<0ӳ511>
chased

NP<5ӳ98>
NP<1ӳ9>

Det<0ӳ693>
a

N<0ӳ916>
cat

PP<2ӳ7>
P<0ӳ105>

on

NP<2ӳ59>
Det<0ӳ693>

the

N<1ӳ61>
mat

S<8ӳ83>
NP<1ӳ9>

Det<0ӳ693>
the

N<0ӳ916>
dog

VP<6ӳ94>
VP<2ӳ63>

V<0ӳ511>
chased

NP<1ӳ9>
Det<0ӳ693>

a

N<0ӳ916>
cat

PP<2ӳ7>
P<0ӳ105>

on

NP<2ӳ59>
Det<0ӳ693>

the

N<1ӳ61>
mat

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing

● By conversion to CFG

● By Graph-based models

● By transition-based parsing

�7

Dependency Grammar
● [P]CFGs:

● Phrase-Structure Grammars

● Focus on modeling constituent structure

● Dependency grammars:

● Syntactic structure described in terms of

● Words

● Syntactic/semantic relations between words

�8

Dependency Parse
● A Dependency parse is a tree, where:

● Nodes correspond to words in string

● Edges between nodes represent dependency relations

● Relations may or may not be labeled

�9

Dependency Parse Example:  
They hid the letter on the shelf

�10

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies
Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example:  
They hid the letter on the shelf

�11

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies
Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example:  
They hid the letter on the shelf

�12

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies
Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Dependency Parse Example:  
They hid the letter on the shelf

�13

Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies
Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det

Alternative Representation

�14

Why Dependency Grammar?
● More natural representation for many tasks

● Clear encapsulation of predicate-argument structure

● Phrase structure may obscure, e.g. wh-movement

● Good match for question-answering, relation extraction

● Who did what to whom?

● = (Subject) did (theme) to (patient)

● Helps with parallel relations between roles in questions, and roles in answers

�15

● Easier handling of flexible or free word order

● How does CFG handle variation in word order?

Why Dependency Grammar?

�16

S

PP

Prep

On

NP

N

Tuesday

NP

Pron

I

VP

Verb

called-in

Adv

sick

S

NP

Pron

I

VP

Verb

called-in

Adv

sick

PP

Prep

on

NP

N

Tuesday

S → PP NP VP S → NP VP PP

● English has relatively fixed word order

● Big problem for languages with freer word order

Why Dependency Grammar?

�17

S

PP

Prep

On

NP

N

Tuesday

NP

Pron

I

VP

Verb

called-in

Adv

sick

S

NP

Pron

I

VP

Verb

called-in

Adv

sick

PP

Prep

on

NP

N

Tuesday

S → PP NP VP S → NP VP PP

= temporal modifier

● How do dependency structures represent the difference?

● Same structure

● Relationships are between words, order insensitive

Why Dependency Grammar?

�18

called-in

I sick on

Tuesday

I called in sick on Tuesday

= temporal modifier

● How do dependency structures represent the difference?

● Same structure

● Relationships are between words, order insensitive

Why Dependency Grammar?

�19

call-in

did I sick when

when did I call in sick?

Natural Efficiencies
● Phrase Structures:

● Must derive full trees of many non-terminals

● Dependency Structures:

● For each word, identify

● Syntactic head, h

● Dependency label, d

● Inherently lexicalized

● Strong constraints hold between pairs of words

�20

Summary
● Dependency grammars balance complexity and expressiveness

● Sufficiently expressive to capture predicate-argument structure

● Sufficiently constrained to allow efficient parsing

● Still not perfect

● “On Tuesday I called in sick” vs. “I called in sick on Tuesday”

● …I would argue these feel pragmatically different, might want to represent differently.

�21

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion from CFG

● By Graph-based models

● By transition-based parsing

�22

Conversion: PS → DS
● Can convert Phrase Structure (PS) to Dependency Structure (DS)

● …without the dependency labels (semantic roles)

● Algorithm:

● Identify all head children in PS

● Make head of each non-head-child depend on head of head-child

● Use a head percolation table to determine headedness

�23

Conversion: PS → DS

�24

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

Conversion: PS → DS

�25

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

little on

markets

financial

Conversion: PS → DS

�26

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

Conversion: PS → DS

�27

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

Conversion: PS → DS

�28

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

Conversion: PS → DS

�29

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

little

Conversion: PS → DS

�30

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

little on

Conversion: PS → DS

�31

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

little on

markets

Conversion: PS → DS

�32

S

NP

JJ

Economic

NN

news

VP

VBD

had

NP

NP

JJ

little

NN

impact

PP

P

on

NP

JJ

financial

NNS

markets

had

news

economic

impact

little on

markets

financial

Head Percolation Table
● Finding the head of an NP:
● If the rightmost word is preterminal, return

● …else search Right→Left for first child which is NN, NNP, NNPS…

● …else search Left→Right for first child which is NP
● …else search Right→Left for first child which is $, ADJP, PRN
● …else search Right→Left for first child which is CD
● …else search Right→Left for first child which is JJ, JJS, RB or QP
● …else return rightmost word.

�33From J&M Page 411, via Collins (1999)

http://www.dfki.de/~neumann/dop-seminar/References/collins-thesis.pdf

Conversion: DS → PS
● Can map any projective dependency tree to PS tree

● Projective:

● Does not contain “crossing” dependencies w.r.t. word order

�34A hearing is scheduled on the issue today .

att

att

sbj

punc

vc

tmp

issue

att

root

Non-Projective DS

�35

= Projection
A

hearing

is

scheduled

on

the

issue

today

.

A is scheduled on

the

todayissue .hearing

Projective DS

�36

= Projection
Economic

news

had

little

effect

on

financial

markets

.

Economic news had little effect

on

marketsfinancial .

More Non-Projective Parses

�37

O to nové většinou nemá ani zájem a taky na to většinou nemá peníze

root

He is mostly not even interested in the new things and in most cases, he has no money for it either.

From McDonald et. al, 2005

John saw a dog yesterday which was a Yorkshire Terrier

root

http://dl.acm.org/citation.cfm?id=1220641

Conversion: DS → PS
● For each node w with outgoing arcs…

● …convert the subtree w and its dependents t1,…,tn to a new subtree:

● Nonterminal: Xw

● Child: w

● Subtrees t1,…,tn in original sentence order

�38

Conversion: DS → PS

�39

Economic news had little effect on financial markets .

sbjatt

obj

att att

pc

att

punc
root

Conversion: DS → PS

�40

Economic news had little effect on financial markets .

sbjatt

obj

att att

pc

att

punc
root

Conversion: DS → PS

�41

Economic news had little effect on financial markets .

sbjatt

obj

att att

pc

att

punc
root

Conversion: DS → PS

�42

Economic news had little effect on financial markets .

sbjatt

obj

att att

pc

att

punc
root

Conversion: DS → PS
● What about labeled dependencies?

● Can attach labels to nonterminals associated with non-heads

● e.g. Xlittle → Xlittle:nmod

● Doesn’t create typical PS trees

● Does create fully lexicalized, labeled, context-free trees

● Can be parsed with any standard CFG parser

�43

�44

The dog barked at the cat .

root

ROOT

Xbarked

Xdog

Xthe

the

dog

barked Xat

at Xcat

Xthe

the

cat

X.

.

Example from J. Moore, 2013

Roadmap
● Dependency Grammars

● Definition

● Motivation:

● Limitations of Context-Free Grammars

● Dependency Parsing
● By conversion to CFG

● By Graph-based models

● By transition-based parsing

�45

Graph-based Dependency Parsing
● Goal: Find the highest scoring dependency tree T̂ for sentence S

● If S is unambiguous, T is the correct parse

● If S is ambiguous, T is the highest scoring parse

● Where do scores come from?

● Weights on dependency edges by learning algorithm

● Learned from dependency treebank

● Where are the grammar rules?

● …there aren’t any! All data-driven.
�46

Graph-based Dependency Parsing
● Map dependency parsing to Maximum Spanning Tree (MST)

● Build fully connected initial graph:

● Nodes: words in sentence to parse

● Edges: directed edges between all words

● + Edges from ROOT to all words

● Identify maximum spanning tree

● Tree s.t. all nodes are connected

● Select such tree with highest weight

�47

Graph-based Dependency Parsing
● Arc-factored model:

● Weights depend on end nodes & link

● Weight of tree is sum of participating arcs

�48

Initial Graph: (McDonald et al, 2005b)

● John saw Mary

● All words connected: ROOT only has outgoing arcs

● Goal: Remove arcs to create a tree covering all words

● Resulting tree is parse

�49

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Maximum Spanning Tree
● McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

● Sketch of algorithm:

● For each node, greedily select incoming arc with max weight

● If the resulting set of arcs forms a tree, this is the MST.

● If not, there must be a cycle.

● “Contract” the cycle: Treat it as a single vertex

● Recalculate weights into/out of the new vertex

● Recursively do MST algorithm on resulting graph

● Running time: naïve: O(n3); Tarjan: O(n2)

● Applicable to non-projective graphs �50

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Step 1 & 2
● Find, for each word, the highest scoring incoming edge.

● Is it a tree?

● No, there’s a cycle.

● Collapse the cycle

● And re-examine the edges again

�51

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

ROOT

John

saw

Mary

??
9

30

0

3

??

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Calculating Weights for Collapsed Vertex

�52

s(Mary, C) 11 + 20 = 31
ROOT

John

saw

Mary

10
9

30

0

3

31

20

30

9

ROOT

John

saw

Mary

40
9

30

0

3

11

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Calculating Weights for Collapsed Vertex

�53

s(ROOT, C) 10 + 30 = 40

Step 3

�54

ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

● With cycle collapsed, recurse on step 1:

● Keep highest weighted incoming edge for each edge

● Is it a tree?

● Yes!

● …but must recover collapsed portions.

ROOT

John

saw

Mary

40
9

30

0

3

31

20

30

9

ROOT

John

saw

Mary

10
9

30

0

3

11

20

30

9

Learning Weights
● Weights for arc-factored model learned from dependency treebank

● Weights learned for tuple (wi, wj, l)

● McDonald et al, 2005a employed discriminative ML

● MIRA (Crammer and Singer, 2003)

● Operates on vector of local features

�55

https://dl.acm.org/citation.cfm?id=1219852
http://www.jmlr.org/papers/volume3/crammer03a/crammer03a.pdf

Features for Learning Weights
● Simple categorical features for (wi, L, wj) including:

● Identity of wi (or char 5-gram prefix), POS of wi

● Identity of wj (or char 5-gram prefix), POS of wj

● Label of L, direction of L
● Number of words between wi, wj
● POS tag of wi-1, POS tag of wi+1

● POS tag of wj-1, POS tag of wj+1

● Features conjoined with direction of attachment and distance between words

�56

Dependency Parsing
● Dependency Grammars:

● Compactly represent predicate–argument structure

● Lexicalized, localized

● Natural handling of flexible word order

● Dependency parsing:

● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)

● Next time: Transition-based parsing

�57

Further Reading
● Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency Parsers. In

Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 91–98. May. [link]

● Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using spanning tree
algorithms. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language
Processing, pages 523–530. Association for Computational Linguistics. [link]

● Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]

● Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th
Conference on Computational Linguistics, pages 340–345. Association for Computational Linguistics. [link]

● Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]

�58

https://dl.acm.org/citation.cfm?id=1219852
http://dl.acm.org/citation.cfm?id=1220641
http://www.morganclaypool.com/doi/abs/10.2200/S00169ED1V01Y200901HLT002?journalCode=hlt
https://dl.acm.org/citation.cfm?doid=992628.992688
http://www.apple.com

