Optimization, Neural Approaches, Information Ordering

LING 573 — Systems & Applications Ryan Georgi — 4/17/2018

Begin Recording!

One More Discourse Approach!

- Christensen et. al, <u>2013</u>, <u>2014</u> GFLOW
 - Rather than perform deep discourse analysis, find simple ordering constraints
 - Look for "but," "however," "moreover"
 - Also look for coreference
 - Build multi-document discourse *directed* graph of sentences
 - Use number of indicators as weights

GFLOW (Christensen et. al, <u>2013</u>, <u>2014</u>)

- Example discourse graph
- Intuition:
 - Coherent summary begins with inciting event
 - Reactions follow

GFLOW (Christensen et. al, <u>2013</u>, <u>2014</u>)

- Preprocessing: Coreference, Deverbal Noun Reference ('bombing' vs. 'attacked')
- Salience Statistical approaches (LLR, tf*idf)
- **Redundancy** handled by comparing Verb(arg1,arg2) tuples
- **Coherence** as calculated by weighted graph

• $\beta |X|$ is brevity penalty

- maximize:
- $F(x) \triangleq Salience(X) + \alpha \cdot Coherence(X) \beta |X|$

GFLOW: Results (Christensen et. al, <u>2013</u>, <u>2014</u>)

- Does not beat state-of-the-art system in **ROUGE** metrics
- But what about others?
- Note: Comparing one gold standard summary aga others is also not particularly high ROUGE-I

	•		4
a		n	St

System	R	F
Νοβατα	30.44	34.36
Best system in DUC-04	38.28	37.94
Takamura and Okumura (2009)	38.50	-
Lin	39.35	38.90
G-FLOW	37.33	37.43
Gold Standard Summaries	40.03	40.03

ROUGE-I Recall and F₁ on DUC '04 Data

GFLOW: Results (Christensen et. al, <u>2013</u>, <u>2014</u>)

• G-Flow better in all but Redundancy on manual evaluations (via AMT workers)

GFLOW: Takeaways (Christensen et. al, <u>2013</u>, <u>2014</u>)

- Discourse can be helpful
 - but perhaps more in information ordering
 - Promotes coherence

Summarization as Optimization

Key Concept

- Extractive summarization can be thought of as global inference problem
- Best summary is a "solution" in the search space that:
 - Maximizes relevance
 - Minimizes redundancy
 - Is bounded in length

- Many approaches we've looked at optimize separately
 - One process to maximize relevancy
 - One process to minimize redundancy
- Many approaches to global optimization problem
 - One is Integer Linear Programming (ILP)

Global Inference

Integer Linear Programming (ILP)

Integer Linear Programming

- A constrained subtype of optimization problem
- An integer linear program specifies
 - A single linear maximization term
 - Subject to linear equality/inequality constraints
 - Involving integer valued variables
- Free ILP Toolkits Available

WASHINGTON

- GNU Linear Programming Kit (GLPK)
- Examples on Github with scipy.optimize

Integer Linear Programming

- **Example: find** $\max y$
 - $-x + y \le 1$ $3x + 2y \le 12$ $2x + 3y \le 12$ $x, y \ge 0$ $x, y \in \mathbb{Z}$
- Solution is to find highest point y that obeys all constraints
 - Finds convex point that matches line representing objective function

WASHINGTON

Summarization as ILP

• For summarization:

- Map summary requirements to ILP elements
- Summary goal:
 - "Best" summary
- Summary requirements:
 - Minimize redundancy
 - Within desired length

Summarization as ILP

• maximize:

WASHINGTON

 $\sum \alpha_i Relevancy(i) - \sum \alpha_{ij} Redundancy(i, j)$ i < j

- Such that $\forall i,j$:
- (1) Sent α_i or sent pair α_{ij} are included or not
- (2) Length of all sentences must be \leq total length K
- (3) If sent pair α_{ij} is included, α_i must be included
- (4) If sent pair α_{ij} is included, α_j must be included
- (5) If α_i and α_j are included, sent pair α_{ij} must be included

(via McDonald, 2007)

(1) $\alpha_i, \alpha_{ij} \in \{0, 1\}$ (2) $\sum_i \alpha_i l(i) \leq K$ (3) $\alpha_{ij} - \alpha_i \leq 0$ (4) $\alpha_{ij} - \alpha_j \leq 0$ (5) $\alpha_i + \alpha_j - \alpha_{ij} \leq 1$

Optimization Approaches to Reducing Redundancy

- DPP: Determinantal Point Processes [python GH] (Kulesza & Taskar 2012)
 - Set models balancing information importance w/diversity
- ICSISumm: Uses Integer Linear Programming frame [code] (Gillick et al, 2008)
 - Optimizes coverage of key bigrams weighted by document frequency
- OCCAMS_V (Davis et al, 2012)

WASHINGTON

- Uses LSA (Latent Semantic Analysis) to weight terms
- Sentence selection via optimization problems:
 - Budgeted maximal coverage; knapsack

ICSISumm

- Key ideas:
 - Cast summarization as optimization problem
 - Identify important "concepts" to incorporate
 - Build best such summary
 - Implemented as Integer Linear Programming

Representing Concepts

- Concepts = Bigrams
 - Stemmed
 - No stopword-only bigrams
 - Occuring in at least 3 documents
- Weights
 - Document frequency
 - # Of Documents (from cluster) for bigram
- Selected sentences must contain ≥ 2 query terms

Results

- ICSISumm, TAC 2008
- After using open source solver
- 2009 results:
 - 2nd best pyramid, ROUGE-2
 - Best ROUGE-3, ROUGE-4

Metric	ICSI-1 (R)	ICSI-2 (R)	Best
Resp	2.689 (9)	2.238 (28)	2.792
Ling	2.479 (21)	2.021 (47)	3.250
Pyr	0.345 (2)	0.324 (10)	0.362
R-1	0.379 (5)	0.383 (4)	0.391
R-2	0.110 (2)	0.111 (1)	_
R-3	0.049 (1)	0.044 (2)	_
R-4	0.023 (1)	0.022 (3)	_
R-SU4	0.134 (4)	0.143 (1)	_
BE	0.063 (2)	0.064 (1)	_

NN Approaches

NN Approaches Overview

- Most work done so far is on singledocument summarization
- Lots of interest in abstractive approaches
 - Large amount of abstractive data available
 - CNN/DailyMail corpus [gh] (dropbox: . / other_resources/cnn-dm)
 - TL;DR reddit summaries [data] [paper] (dropbox: ./other_resources/tldr)
 - Lots of abstractive approaches

Graph-Convolutional NN Summarization (Yasunaga et. al, 2017)

- Build sentence relation graph
 - Represent nodes in the graph with GRU-generated sentence embeddings

Graph-Convolutional NN Summarization (Yasunaga et. al, 2017)

- Use Graph Convolutional Networks (Kipf & Welling, 2017)
 - Convolves (applies filters) to sent embeddings to produce 2nd order sent embeddings
 - Purpose of GCN learn important features of graph (think: eigenvector)

WASHINGTON

⇒

Graph-Convolutional NN Summarization (Yasunaga et. al, 2017)

- Use GRU of sentence embeddings to represent clusters as cluster embeddings
 - (Cluster embedding \approx neuralnet-speak for centroid)
- Calculate salience by comparing sentence embedding to cluster embedding

WASHINGTON

• Pick salient sentences greedily

Estimated Scores

Networks

Salience Estimation

Graph-Convolutional NN Summarization (Yasunaga et. al, 2017)

(GRU = Gated Recurrent Unit)

Graph-Convolutional NN Summarization (Yasunaga et. al, 2017)

- Multiple graph-building approaches used
 - Cosine similarity
 - Approximate Discourse Graph (ADG)
 - (From GFLOW)
 - Personalized Discourse Graph (PDF)

Results

- "traditional" methods still competitive
- Does not use model summaries

(DUC 2004 Eval Set)

	R-1	R-2
SVR (Li et al. , 2007)	36.18	9.34
CLASSYII (Conroy et al, 2011)	37.22	9.20
CLASSY04 (Conroy et al, 2004)	37.62	8.96
GreedyKL (Haghighi and Vanderwende, 2	009) 37.98	8.53
TsSum (Conroy et al, 2006)	35.88	8.15
G-Flow (Christensen et al, 2013)	35.30	8.27
FreqSum (Nenkova et al., 2006)	35.30	8.11
Centroid (Radev et al., 2004b)	36.41	7.97
Cont. LexRank (Erkan and Radev, 2004)) 35.95	7.47
RegSum (Hong and Nenkova, 2014)	38.5	9.75
GRU	36.64 _{±0.11}	8.47
GRU+GCN: Cosine Similarity Graph	$37.33_{\pm 0.23}$	8.78
GRU+GCN: ADG from G-Flow	37.41 _{±0.32}	8.97
GRU+GCN: Personalized Discourse Gr	aph 38.2<u>3</u>0.22	9.48

- Essentially similar to seq2seq
 - But **attention** used for extraction rather than focus for translation
- CNNs quite good at classification
- RNNs good at order information
- Combining both:

WASHINGTON

- sentences classified by salience (CNN)
- ordering of attention used for selection (RNN)

- Training data: DailyMail news highlights
 - Highlights = abstractive
 - Used highlights to determine doc sentences
- Methodology:
 - Used word embeddings for word input
 - Convolutions:
 - words→6-dim sentence embeddings
 - Max pooling to select salient convolved feats
 - Sentence embeddings input to RNN

WASHINGTON

- Sentence embeddings input to RNN (LSTM)
- Attention in LSTM used to highlight sentences for extraction
 - Conditioned upon previous decisions

- Outperforms LEAD and Logistic regression (LREG)
- Constraint-based approaches do better
 - ILP / uRank

DUC 2002	Rouge -1	Rouge -2	Roug
LEAD	43.6	21.0	40.
LREG	43.8	20.7	40.
ILP	45.4	21.3	42.
NN-ABS	15.8	5.2	13.
TGRAPH	48.1	24.3	
URANK	48.5	21.5	
NN-SE	47.4	23.0	43.
NN-WE	27.0	7.9	22.

Eval on DUC-2002 Single-Document

Information Ordering

Information Ordering

• Basic Approaches:

- Variations on chronological ordering
- Ensembles for ordering

- Content Selection:
 - Identified sentences or information units for summary
- Information Ordering
 - Linearize selected content into smooth-flowing text

Basics

Information Ordering: Factors

- Semantics
 - Chronology respect the sequential flow of content (esp. events)
- Discourse:
 - Cohesion Adjacent sentences talk about the same thing
 - Coherence Adjacent sentences naturally related

Single vs. Multi-Document

- Single-document summarization: Just keep original order.
 - Chronology? Ok.
 - Cohesion? Ok.
 - Coherence? *Meh...*
- Multi-document
 - What does "original order" mean?
 - Chronology?
 - **Publication** order? Or **document-internal** order?
 - Differences in document ordering of information

WASHINGTON

Information Ordering: A Bad Example* (The 2001 death of Ernest Hemingway's trans daughter, Gloria [formerly Gregory] Hemingway)

- I. Hemingway, 69, died of natural causes in a Miami jail after being arrested for indecent exposure.
- 2. A book [s]he wrote about [her] father, "Papa: A Personal Memoir," was published in 1976. 3. [She] was picked up last Wednesday after walking naked in Miami.
- 4. "He had a difficult life." [sic]
- 5. A transvestite who later had a sex-change operation, [she] suffered bouts of drinking, depression, and drifting, according to acquaintances.
- 6. "It's not easy to be the son of a great man," [sic] Scott Donaldson told Reuters.

[*editorial brackets mine]

WASHINGTON

A Basic Approach

- Publication Chronology
- Given a set of ranked, extracted sentences...
- Order by:
 - Across articles
 - By publication date
- Then:
 - Within articles
- Clearly not ideal, but at least a reproducible baseline.

WASHINGTON

Improving Ordering

- Improve some set of chronology, cohesion, coherence
- Chronology, cohesion (<u>Barzilay et al, 2002</u>)
- Key ideas:
 - Summarization and chronology over "themes"
 - Identifying cohesive blocks within articles
 - Combining constraints for cohesion within time structure

Importance of Ordering

- Analyzed DUC summaries scoring poor on ordering
- Manually reordered existing sentences to improve
- Human judges scored both sets:
 - Incomprehensible, Somewhat Comprehensible, Comprehensible
- Manually reorderings as good or better than originals
- Argues people are sensitive to ordering
 - Ordering can improve assessment

Announcements

- D2 due next week!
- Presentations in place of regular material (come prepared to present!)
- Will send out scheduling poll for slot sign-ups.

