&

Dependency Parsing Feature-based Parsing

Ling 571 — Deep Processing Techniques for NLP October 22, 2018 Ryan Georgi

Fun Fact: No statistician has ever been on an airplane.

Source: Saturday Morning Breakfast Cereal

 $P\left(\lim_{x\to 0}\frac{x}{n}\right)\neq P(0)$

$P(ADJ \rightarrow \text{`brillig'}) = 1.2 \times 10^{-342}$ (Think "Jabberwocky")

$P(ADJ \rightarrow \text{'brilliger'}) \neq 0$...l just used it!

Input query:

"Is 'brilliger' an adjective?"

Parser with OOV handling:

"Err... probably not?"

-

HW #4 Follow-up

HW #4 Follow-up: OOV Handling

- As we discussed previously, you will find OOV tokens
- Sometimes this as as simple as case-sensitivity:

OOV: Cas

Sentence #23: "Arriving before four p.m.

"arriving" is in our grammar, but not "Arriving"

se Sensitiv	ty			
9 9				
•IN•2 2•NP•4 [-13.9845] -> 1•IN•2 2•NP•4 [-13.1613]			4●PUNC●5 [-19. _PP●4 4●PUNC●5	
> 2•CD•3 3•RB•4 [-10.3372] E -> 2•CD•3 3•RB•4 [-10.2784] •CD•3 3•RB•4 [-8.9233]		> 2●NP●4	4●PUNC●5 [-11.	4025]
o.m" [-1.1144]				
4		·> "." [-	-0.3396]	

OOV: Case Sensitivity

Sentence #23: "Arriving before four p.m ."

<pre> PRIME -> 0•VBG•1 1•PP•4 [-19.6776] VP_PRIME -> 0•VBG•1 1•PP•4 [-18.0049] VP -> 0•VBG•1 1•PP•4 [-17.6629] FRAG_VP -> 0•VBG•1 1•PP•4 [-16.2257] FRAG_VP_PRIME -> 0•VBG•1 1•PP•4 [-15.869</pre>	TOP -> 0•FRAG_VP•4 4•PUNC•5 [-2: TOP -> 0•VP•4 4•PUNC•5 [-20.150:
PP -> 1●IN●2 2●NP●4 [-13.9845] FRAG_PP -> 1●IN●2 2●NP●4 [-13.1613]	TOP -> 1●PP●4 4●PUNC●5 [-19.4677 TOP -> 1●FRAG_PP●4 4●PUNC●5 [-18
3438] PRIME -> 2•CD•3 3•RB•4 [-10.3372] NP_PRIME -> 2•CD•3 3•RB•4 [-10.2784] NP -> 2•CD•3 3•RB•4 [-8.9233]	TOP -> 2●NP●4 4●PUNC●5 [-11.4025
RB -> "p.m" [-1.1144]	
J	PUNC -> "." [-0.3396] 4

HW #4 Follow-up: OOV Handling

• Propose some number of N most likely tags at runtime...

"Show me Ground transportation in Denver during weekdays ." — No "during"!

	FRAG_NP_PRIME \rightarrow 2FRAG_NP_PRIME 4 PP 6[-21.810] FRAG_NP \rightarrow 2FRAG_NP_PRIME 4 PP 6[-20.858]			
	NP_PRIME \rightarrow 3 NN 4 PP 6[-16.296] PRIME \rightarrow 3 NN 4 PP 6[-15.949]			
IN → "in" [-2.4018]	PP → 4 IN 5 NP_NNP 6[-7.505] FRAG_PP → 4 IN 5NP_NNP 6 [-6.828]			
5	NNP \rightarrow "Denver" [-4.4002] NP_NNP \rightarrow "Denver" [-3.3280]			
	6			
		7	NNS \rightarrow "weekdays" [-5.5759] NP_NNS \rightarrow "weekdays" [-3.7257]	TOP → 7NP_NNS 8PUNC 9[-11.00
			8	PUNC → "." [-0.3396]

9

$FRAG_NP_PRIME \rightarrow \dots$ $FRAG_NP \rightarrow \dots$	$FRAG_NP_PRIME \rightarrow \dots$ $FRAG_NP \rightarrow \dots$	$FRAG_NP \rightarrow \dots$ $FRAG_NP \rightarrow \dots$	TOP \rightarrow 2FRAG_NP 8 PUNC 9[-34.939] TOP \rightarrow 2FRAG_NP 8 PUNC 9[-34.006]
NP_PRIME $\rightarrow \dots$ PRIME $\rightarrow \dots$	PRIME \rightarrow 3 NN 4PP 7 [-17.145] QP \rightarrow 3 PRIME 6CD 7 [-15.930]	NP \rightarrow 3 PRIME 7NNS 8 [-26.542] NP \rightarrow 3 QP 7 NNS 8 [-26.398]	TOP \rightarrow 3NP 8PUNC 9[-29.022] TOP \rightarrow 3NP 8PUNC 9[-28.877]
$PP \rightarrow \dots$ $FRAG_PP \rightarrow \dots$	$PP \rightarrow 4 \text{ IN 5 NP 7[-8.701]}$ $FRAG_PP \rightarrow 4 \text{ IN 5NP 7 [-7.878]}$	PP → 4 IN 5 NP 8[-19.056] FRAG_PP → 4 IN 5NP 8 [-18.233]	TOP \rightarrow 4PP 8PUNC 9[-24.540] TOP \rightarrow 4FRAG_PP 8 PUNC 9[-23.716]
NNP \rightarrow "Denver" [-4.4002] NP_NNP \rightarrow "Denver" [-3.3280]	NP_PRIME \rightarrow 5NNP 6 NNP 7[-6.110] NP \rightarrow 5 NNP 6NNP 7 [-5.070]	NP \rightarrow 5 NP 7 NNS 8 [-17.330] NP \rightarrow 5NP_PRIME 7 NNS 8 [-15.426]	TOP \rightarrow 5NP 8PUNC 9[-19.809] TOP \rightarrow 5NP 8PUNC 9[-17.905]
6	NNP → "during" [1.0000] NN → "during" [1.0000] NP_NNP → "during" [1.0000] VB → "during" [1.0000] CD → "during" [1.0000]	VP → 6 VB 7NP_NNS 8[-8.922] S_VP → 6 VB 7NP_NNS 8[-6.611]	TOP → 6VP 8PUNC 9[-11.410] TOP → 6S_VP 8PUNC 9[-9.176]
	7	NNS \rightarrow "weekdays" [-5.5759] NP_NNS \rightarrow "weekdays" [-3.7257]	TOP \rightarrow 7NP_NNS 8 PUNC 9[-11.001]
		8	PUNC → "." [-0.3396]

9

WASHINGTON

WASHINGTON

Problems with this approach?

Handling OOV

• Option #I:

- Choose subset of training data vocab to be hidden
- Hidden words replaced by <UNK>
- Run induction as usual, but some words are now '<UNK>'

• **Option #2:**

- Replace first occurrence of every word with <UNK>
- (See J&M 2nd ed 4.3.2 <u>3rd ed, 3.3.1</u>)

Problems with These Approaches?

Option #I

- May sample "closed-class" words
- Closed-class words are disproportionately more common
 - .: Approximation will be worse the more data there is, because Zipf

• **Option #2**

- **Con**: Requires a lot more data
- **Pros**: Samples from all word classes
 - Will only count closed-class words once

HW #4 Extra Credit Opportunity

• Up to 10 points:

- Design an OOV treatment for handling treebank training data that:
 - I. Uses <UNK> token sampling
 - 2. Is smart about open vs. closed-class words
- You can modify reference code for HW #4.

Other Announcements

Other Announcements

• HW #2

• Expect grades by EOD

• HW #3

• By Wednesday, most likely.

Dependency Parsing

• Transition-based Parsing

- Feature-based Parsing
 - Motivation
 - Features
 - Unification

Today

Argument Dependencies

Abbreviation	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier	Dependencies
Modifier Abbreviation	Dependencies Description
	-
Abbreviation	Description
Abbreviation tmod	Description temporal modifier

WASHINGTON

Transition-Based Parsing

- Parsing defined in terms of sequence of transitions
- Alternative methods for learning/decoding
 - Most common model: Greedy classification-based approach
 - Very efficient: O(n)
- Best-known implementations:
 - Nivre's MALTParser
 - Nivre et al (2006); Nivre & Hall (2007)

Transition-Based Parsing

- A transition-based system for dependency parsing is:
 - A set of configurations C
 - A set of transitions between configurations
 - A transition function between configurations
 - An initialization function (for C_0)
 - A set of terminal configurations ("end states")

Configurations

- A configuration for a sentence x is the triple (Σ, B, A) :
- Σ is a stack with elements corresponding to the nodes (words + ROOT) in x
- B (aka the buffer) is a list of nodes in x
- A is the set of dependency arcs in the analysis so far,
 - (w_i, L, w_j) , where w_x is a node in x and L is a dependency label

Transitions

- Transitions convert one configuration to another
 - $C_i = t(C_i 1)$, where t is the transition
- Dependency graph for a sent:
 - The set of arcs resulting from a sequence of transitions
- The parse of the sentence is that resulting from the initial state through the sequence of transitions to a legal terminal state

Dependencies -> Transitions

- To parse a sentence, we need the sequence of transitions that derives it
- How can we determine sequence of transitions, given a parse?
- This is defining our **oracle** function:
 - How to take a parse and translate it into a series of transitions

Dependencies -> Transitions

- Many different oracles:
 - Nivre's arc-standard
 - <u>Nivre's arc-eager</u>
 - Non-projectivity with <u>Attardi's</u>

• Generally:

. . .

WASHINGTON

- Use oracle to identify gold transitions
- Train classifier to predict best transition in new config

Nivre's Arc-Standard Oracle

- Words: w_1, \ldots, w_n
 - $\boldsymbol{w}_0 = \mathrm{ROOT}$
- Initialization:
 - Stack = $[w_0]$; Buffer = $[w_1, \dots, w_n]$; Arcs = \emptyset
- Termination:
 - Stack = σ ; Buffer= []; Arcs = A
 - for any σ and A

Nivre's Arc-Standard Oracle

- Transitions are one of three:
 - Shift
 - Left-Arc
 - Right-Arc

Transitions: Shift

• Shift first element of buffer to top of stack. ● [i][j,k,n][] → [i,j][k,...,n][]

Stack

Buffer

Arcs

Transitions: Shift

• Shift first element of buffer to top of stack. ● [i][j,k,n][] → [i,j][k,...,n][]

Buffer

Transitions: Left-Arc

- Add arc from first element of buffer j to element at top of stack i with dependency label 1
 - Pop i from stack.
 - [i] [j,k,n] $A \rightarrow$ [i] [k,...,n] $A \cup$ [(j,l,i)]

i

Stack

Buffer

Arcs

Transitions: Left-Arc

- Add arc from first element of buffer j to element at top of stack i with dependency label 1
 - Pop i from stack.
 - [i] [j,k,n] $A \rightarrow$ [i] [k,...,n] $A \cup$ [(j,l,i)]

Stack

Arcs

(j,l,i)

Transitions: Right-Arc

- Add arc from top of stack i to first element of buffer j with dependency label 1
 - Replace j with i as front of buffer; pop j from stack.
 - [i] [j,k,n] $A \rightarrow$ [i] [k,...,n] $A \cup$ [(j,l,i)]

Transitions: Right-Arc

- Add arc from top of stack i to first element of buffer j with dependency label 1
 - Replace j with i as front of buffer; pop j from stack.
 - [i] [j,k,n] $A \rightarrow$ [i] [k,...,n] $A \cup$ [(j,l,i)]

Transitions: Right-Arc

- Add arc from top of stack i to first element of buffer j with dependency label 1
 - Replace j with i as front of buffer; pop j from stack.
 - [i] [j,k,n] $A \rightarrow$ [i] [k,...,n] $A \cup$ [(j,l,i)]

Arcs

(i,l,j)

Training Process

- Each step of the algorithm is a decision point between the three states
- - (Reduce to a classification problem)
- We start with:
 - A treebank
 - An *oracle* process for guiding the transitions

• We want to train a model to decide between the three options at each step

• A discriminative learner to relate the transition to features of the current configuration

Training Process, Formally:

 (Σ, B, A)

1)
$$c \leftarrow c_{\theta}(S)$$

2) while c is not terminal
3) $t \leftarrow o(c) + Choose the (o)$
4) $c \leftarrow t(c) + Move to the ne
5) return $G_c$$

)ptimal transition for the config *c* ext configuration

Testing Process, Formally:

 (Σ, B, A)

1)
$$c \leftarrow c_{\theta}(S)$$

2) while c is not terminal
3) $t \leftarrow \lambda_c(c)$ # Choose the tra
4) $c \leftarrow t(c)$ # Move to the ne
5) return G_c

ensition given model parameters at c ext configuration

Representing Configurations with Features

• Address

- Locate a given word:
 - By position in stack
 - By position in buffer
 - By attachment to a word in buffer

• Attributes

- Identity of word
- Iemma for word
- POS tag of word

WASHINGTON

Example: (Ballesteros et al 2015)

Action	Stack	Buffer
	[ROOT]	[They told him a story]
Shift	[ROOT, They]	[told him a story]
Left-Arc (subj)	[ROOT, told]	[him a story]
Shift	[ROOT, told, him]	[a story]
Right-Arc (iobj)	[ROOT, told]	[a story]
Shift	[ROOT, told, a]	[story]
Shift	[ROOT,told, a, story]	[]
Left-Arc (Det)	[ROOT, told, story]	[]
Right-Arc (dobj)	[ROOT, told]	[]
Right-Arc (root)	[ROOT]	[]
subj	h (iobj)	det
They	told him	a story

WASHINGTON

Transition-Based Parsing Summary

• Shift-Reduce paradigm, bottom-up approach

• Pros:

- Single pass, O(n) complexity
- Reduce parsing to classification problem; easy to introduce new features

• Cons:

- Only makes local decisions, may not find global optimum
- Does not handle non-projective trees without hacks
 - e.g. transforming nonprojective trees to projective in training data; reconverting after

Other Notes

- ... is this a parser?
 - No, not really!
 - Transforms problem into sequence labeling task, of a sort.
 - e.g. (SH, LA, SH, RA, SH, SH, LA, RA)
 - Sequence score is sum of transition scores
- Classifier: Any
 - Originally, SVMs
 - Currently: NNs + LSTMs
 - State-of-the-art: UAS: 92.5%; LAS: 90.5%

WASHINGTON

Dependency Parsing: Summary

- Dependency Grammars:
 - Compactly represent pred-arg structure
 - Lexicalized, localized
 - Natural handling of flexible word order
- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj $O(n^2)$
 - Transition-based parser
 - MALTparser: very efficient O(n)
 - Optimizes local decisions based on many rich features

WASHINGTON

Roadmap

- Dependency Parsing
 - Transition-based Parsing

• Feature-based Parsing

- Motivation
- Features
- Unification

Feature-Based Parsing

• $S \rightarrow NPVP$

• They run.

• He runs.

But...

- *They runs
- * He run
- * He disappeared the flight

Violate agreement (number/person), subcategorization

Constraints & Compactness

Enforcing Constraints with CFG Rules

• Agreement

- $S \rightarrow NP_{sg+3p}VP_{sg+3p}$
- $S \rightarrow NP_{pl+3p}VP_{pl+3p}$

• Subcategorization:

• $VP \rightarrow V_{\text{transitive}} NP$

- $VP \rightarrow V_{intransitive}$
- $VP \rightarrow V_{ditransitive} NP NP$

• Explosive, and loses key generalizations

- Need compact, general constraint
- $S \rightarrow NPVP$ [iff NP and VP agree]

WASHINGTON

- How can we describe agreement & subcategory?
 - Decompose into elementary features that must be consistent
 - e.g. Agreement on number, person, gender, etc
- Augment CF rules with feature constraints
 - Develop mechanism to enforce consistency
 - Elegant, compact, rich representation

Feature Grammars

Feature Representations

- Fundamentally Attribute-Value pairs
 - Values may be symbols or feature structures
 - Feature path: list of features in structure to value
 - "Reentrant feature structure" sharing a structure
- Represented as
 - Attribute-Value Matrix (AVM)
 - Directed Acyclic Graph (DAG)

Attribute-Value Matrices (AVMs)

$\begin{bmatrix} \mathsf{ATTRIBUTE}_1 & \mathsf{value}_1 \\ \mathsf{ATTRIBUTE}_2 & \mathsf{value}_2 \end{bmatrix}$ \vdots $\underbrace{\mathsf{ATTRIBUTE}_n & \mathsf{value}_n \end{bmatrix}$

CAT

NUMBER PL PERSON 3

CAT S

(B)

NP CAT NUMBER PL PERSON 3

(D)

(C)

HEAD

NP NUMBER PL PERSON 3 AGREEMENT

NUMBER PL AGREEMENT 1 PERSON 3 AGREEMENT SUBJEC

CAT NP NUMBER PL AGREEMENT PERSON 3

Using Feature Structures

- Feature Structures provide formalism to specify constraints
- ... but how to apply the constraints?
- Unification

Unification:

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures
- Two structures can unify if:
 - Feature structures *match* where both have values
 - Feature structures differ only where one value is missing or underspecified
 - Missing or underspecified values are filled with constraints of other
- Result of unification incorporates constraints of both

Subsumption

- Less specific feature structure *subsumes* more specific feature structure
- FS F subsubmes FS G iff:
 - For every feature x in F, F(x) subsumes G(x) for all paths p and q in F s.t. F(p) = F(q), G(p) = G(q)
- Examples:
 - $A = \begin{bmatrix} NUMBER SG \end{bmatrix}$ $B = \begin{bmatrix} PERSON 3 \end{bmatrix}$ A subsumes C C = NUMBER SG PERSON 3

• B subsumes C **B** & A don't subsume

Unification Examples

- Identical

Larger Unification Example

One More Unification Example

WASHINGTON

Rule Representation

• $\beta \rightarrow \beta_1 \dots \beta_n$

• $Pron \rightarrow \text{'he'}$

$\langle PRON | AGREEMENT | PERSON \rangle = 3rd$

$\{set of constraints\}$ $\langle \beta_i feature path \rangle = Atomic value | \langle \beta_j feature path \rangle$

Rule Representation

• $\beta \to \beta_1 \dots \beta_n$ {set of constraints} $\langle \beta_i \text{ feature period} \rangle$

• $NP \rightarrow Pron$ $\langle NP \text{ Agreement Person} \rangle = \langle Pron \text{ Agreement Person} \rangle$

 $\langle \beta_i \text{feature path} \rangle = \text{Atomic value} | \langle \beta_j \text{feature path} \rangle$

Agreement with Heads and Features • $\beta \rightarrow \beta_1 \dots \beta_n$ $\{set of constraints\}$ $\langle \beta_i feature path \rangle = Atomic value | \langle \beta_j feature path \rangle$

S
ightarrow NP VP $\langle NP \text{ AGREEMENT} \rangle = \langle VP \text{ AGREEMENT} \rangle$

$S ightarrow Aux \ NP \ VP$

 $\langle Aux \text{ AGREEMENT} \rangle = \langle NP \text{ AGREEMENT} \rangle$

NP
ightarrow Det Nominal

 $\langle Det \text{AGREEMENT} \rangle = \langle Nominal \text{AGREEMENT} \rangle$ $\langle NP \text{ AGREEMENT} \rangle = \langle Nominal \text{ AGREEMENT} \rangle$

 $Aux \rightarrow does$ $\langle AUX \text{ AGREEMENT NUMBER} \rangle = sg$ $\langle NP | AGREEMENT | PERSON \rangle = 3rd$ WASHINGTON

 $Det \rightarrow this$ $\langle Det \text{ AGREEMENT NUMBER} \rangle = sg$

 $Det \rightarrow these$ $\langle Det \text{ AGREEMENT NUMBER}
angle = pl$

 $Verb \rightarrow serve$ $\langle Verb | AGREEMENT | NUMBER \rangle = pl$

 $Noun \rightarrow flight$ $\langle Noun | AGREEMENT | NUMBER \rangle = sg$

HW #5

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

Goals

- Explore the role of features in implementing linguistic constraints.
- Identify some of the challenges in building compact constraints to define a precise grammar.
- Apply feature-based grammars to perform grammar checking.

Tasks

- Build a Feature-Based Grammar
 - We will focus on the building of the grammar itself you may use NLTK's nltk.parse.FeatureEarleyChartParser or similar.

Simple Feature Grammars

• $S \rightarrow NPVP$

WASHINGTON

- N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
- N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
- Det[NUM=pl] -> 'these' | 'all'
- Det[NUM=sg] -> 'this' | 'every'
- NP[NUM=?n] \rightarrow Det[NUM=?n] N[NUM=?n]
- NP[NUM=?n] \rightarrow PropN[NUM=?n]
- NP[NUM=?n] \rightarrow N[NUM=?n]
- S \rightarrow NP[NUM=?n] VP[NUM=?n]

Simple Feature Grammars

WASHINGTON

(S[] (NP[NUM='sg'])(PropN[NUM='sg'] Kim)) (VP[NUM='sg', TENSE='pres'] (TV[NUM='sg', TENSE='pres'] likes)

>>> cp = load_parser('grammars/book_grammars/ feat0.fcfg') >>> for tree in cp.parse(tokens): print(tree) • • •

Parsing with Features

(NP[NUM='pl'] (N[NUM='pl'] children)))

Feature Applications

- Subcategorization
 - Verb-Argument constraints
 - Number, type, characteristics of args
 - e.g. is the subject animate?
 - Also adjectives, nouns
- Long-distance dependencies
 - e.g. filler-gap relations in wh-questions

Morphosyntactic Features

- Grammtical feature that influences morphological or syntactic behavior
 - English:
 - Number:
 - Dog, dogs
 - Person:
 - am; are; is
 - Case:
 - I / me; he / him; etc.

Semantic Features

- E.g.:
 - ?The rocks slept.
- Many proposed:
 - Animacy: +/-
 - Gender: masculine, feminine, neuter
 - Human: +/-
 - Adult: +/-
 - Liquid: +/-

WASHINGTON

• Grammatical features that influence semantic (meaning) behavior of associated units

Aspect (J&M 17.4.2)

- The climber [hiked] [for six hours].
- The climber [hiked] [on Saturday].
- The climber [reached the summit] [on Saturday].
- *The climber [reached the summit] [for six hours].

- Contrast:
 - Achievement (in an instant) vs activity (for a time)

