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P(ADJ → ‘brilliger’) ≠ 0 
…I just used it!

P(ADJ → ‘brillig’) = 1.2×10-342 

(Think “Jabberwocky”)

Source: Saturday Morning Breakfast Cereal

Input query: “Is ‘brilliger' an adjective?”
ssdd

Parser with 
OOV handling: “Err… probably not?”

P (lim
x→0

x
n ) ≠ P (0)

https://www.smbc-comics.com/comic/explosives
https://en.wikipedia.org/wiki/Jabberwocky
https://www.smbc-comics.com/comic/explosives


HW #4 Follow-up
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HW #4 Follow-up: OOV Handling
● As we discussed previously, you will find OOV tokens

● Sometimes this as as simple as case-sensitivity:
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OOV: Case Sensitivity
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Sentence #23: “Arriving before four p.m .”

  ----------------------------------------------------------------------------------------------------------------------------------------
  |  |                          |                        |                                      |                                        |
0 ----------------------------------------------------------------------------------------------------------------------------------------
     | IN -> "before" [-3.8326] |                        | PP -> 1•IN•2 2•NP•4 [-13.9845]       | TOP -> 1•PP•4 4•PUNC•5 [-19.4677]      |
     |                          |                        | FRAG_PP -> 1•IN•2 2•NP•4 [-13.1613]  | TOP -> 1•FRAG_PP•4 4•PUNC•5 [-18.6445] |
   1 -------------------------------------------------------------------------------------------------------------------------------------
                                | CD -> "four" [-4.3438] | PRIME -> 2•CD•3 3•RB•4 [-10.3372]    | TOP -> 2•NP•4 4•PUNC•5 [-11.4025]      |
                                |                        | NP_PRIME -> 2•CD•3 3•RB•4 [-10.2784] |                                        |
                                |                        | NP -> 2•CD•3 3•RB•4 [-8.9233]        |                                        |
                              2 ----------------------------------------------------------------------------------------------------------
                                                         | RB -> "p.m" [-1.1144]                |                                        |
                                                       3 ---------------------------------------------------------------------------------
                                                                                                | PUNC -> "." [-0.3396]                  |
                                                                                              4 ------------------------------------------
                                                                                                                                         5

“arriving” is in our grammar, but not “Arriving”



OOV: Case Sensitivity
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Sentence #23: “Arriving before four p.m .”

  -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  | VBG -> "arriving" [-1.0372]     |                          |                        | PRIME -> 0•VBG•1 1•PP•4 [-19.6776]         | TOP -> 0•FRAG_VP•4 4•PUNC•5 [-21.1981] |
  | VP_VBG -> "arriving" [-0.6931]  |                          |                        | VP_PRIME -> 0•VBG•1 1•PP•4 [-18.0049]      | TOP -> 0•VP•4 4•PUNC•5 [-20.1503]      |
  | S_VP_VBG -> "arriving" [0.0000] |                          |                        | VP -> 0•VBG•1 1•PP•4 [-17.6629]            |                                        |
  |                                 |                          |                        | FRAG_VP -> 0•VBG•1 1•PP•4 [-16.2257]       |                                        |
  |                                 |                          |                        | FRAG_VP_PRIME -> 0•VBG•1 1•PP•4 [-15.8691] |                                        |
0 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                    | IN -> "before" [-3.8326] |                        | PP -> 1•IN•2 2•NP•4 [-13.9845]             | TOP -> 1•PP•4 4•PUNC•5 [-19.4677]      |
                                    |                          |                        | FRAG_PP -> 1•IN•2 2•NP•4 [-13.1613]        | TOP -> 1•FRAG_PP•4 4•PUNC•5 [-18.6445] |
                                  1 -------------------------------------------------------------------------------------------------------------------------------------------
                                                               | CD -> "four" [-4.3438] | PRIME -> 2•CD•3 3•RB•4 [-10.3372]          | TOP -> 2•NP•4 4•PUNC•5 [-11.4025]      |
                                                               |                        | NP_PRIME -> 2•CD•3 3•RB•4 [-10.2784]       |                                        |
                                                               |                        | NP -> 2•CD•3 3•RB•4 [-8.9233]              |                                        |
                                                             2 ----------------------------------------------------------------------------------------------------------------
                                                                                        | RB -> "p.m" [-1.1144]                      |                                        |
                                                                                      3 ---------------------------------------------------------------------------------------
                                                                                                                                     | PUNC -> "." [-0.3396]                  |
                                                                                                                                   4 ------------------------------------------
                                                                                                                                                                              5



HW #4 Follow-up: OOV Handling
● Propose some number of N most likely tags at runtime…
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FRAG_NP_PRIME → 2FRAG_NP_PRIME 4 PP 6[-21.810]
FRAG_NP → 2FRAG_NP_PRIME 4 PP 6[-20.858]

NP_PRIME → 3 NN 4 PP 6[-16.296]
PRIME → 3 NN 4 PP 6[-15.949]

IN → "in" [-2.4018] PP → 4 IN 5 NP_NNP 6[-7.505]
FRAG_PP → 4 IN 5NP_NNP 6 [-6.828]

5
NNP → "Denver" [-4.4002]

NP_NNP → "Denver" [-3.3280]

6

7 NNS → "weekdays" [-5.5759]
NP_NNS → "weekdays" [-3.7257]

TOP → 7NP_NNS 8PUNC 9[-11.001]

8 PUNC → "." [-0.3396]

9
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OOV: Propose POS Tags
“Show me Ground transportation in Denver during weekdays .” — No “during”!



FRAG_NP_PRIME → …
FRAG_NP → …

FRAG_NP_PRIME → …
FRAG_NP → …

FRAG_NP →…
FRAG_NP → …

TOP → 2FRAG_NP 8 PUNC 9[-34.939]
TOP → 2FRAG_NP 8 PUNC 9[-34.006]

NP_PRIME → …
PRIME → …

PRIME → 3 NN 4PP 7 [-17.145]
QP → 3 PRIME 6CD 7 [-15.930]

NP → 3 PRIME 7NNS 8 [-26.542]
NP → 3 QP 7 NNS 8 [-26.398]

TOP → 3NP 8PUNC 9[-29.022]
TOP → 3NP 8PUNC 9[-28.877]

PP → …
FRAG_PP → …

PP → 4 IN 5 NP 7[-8.701]
FRAG_PP → 4 IN 5NP 7 [-7.878]

PP → 4 IN 5 NP 8[-19.056]
FRAG_PP → 4 IN 5NP 8 [-18.233]

TOP → 4PP 8PUNC 9[-24.540]
TOP → 4FRAG_PP 8 PUNC 9[-23.716]

NNP → "Denver" [-4.4002]
NP_NNP → "Denver" [-3.3280]

NP_PRIME → 5NNP 6 NNP 7[-6.110]
NP → 5 NNP 6NNP 7 [-5.070]

NP → 5 NP 7 NNS 8 [-17.330]
NP → 5NP_PRIME 7 NNS 8 [-15.426]

TOP → 5NP 8PUNC 9[-19.809]
TOP → 5NP 8PUNC 9[-17.905]

6

NNP → "during" [1.0000]
NN → "during" [1.0000]

NP_NNP → "during" [1.0000]
VB → "during" [1.0000]
CD → "during" [1.0000]

VP → 6 VB 7NP_NNS 8[-8.922]
S_VP → 6 VB 7NP_NNS 8[-6.611]

TOP → 6VP 8PUNC 9[-11.410]
TOP → 6S_VP 8PUNC 9[-9.176]

7
NNS → "weekdays" [-5.5759]

NP_NNS → "weekdays" [-3.7257] TOP → 7NP_NNS 8 PUNC 9[-11.001]

8 PUNC → "." [-0.3396]

9 �9

“Show me Ground transportation in Denver during weekdays .” — No “during”!

OOV: Propose POS Tags
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Parse result: TOP

S_VP

S_VP_PRIME

VB

Show

NP_PRP

me

NP

NP_PRIME

NP

NN

Ground

NN

transportation

PP

IN

in

NP_NNP

Denver

VP

VB

during

NP_NNS

weekdays

PUNC

.

OOV: Propose POS Tags
“Show me Ground transportation in Denver during weekdays .” — No “during”!
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Gold parse: TOP

S_VP

S_VP_PRIME

VB

Show

NP_PRP

me

NP

NP_PRIME

NP

NN

Ground

NN

transportation

PP

IN

in

NP_NNP

Denver

PP

IN

during

NP_NNS

weekdays

PUNC

.

“Show me Ground transportation in Denver during weekdays .” — No “during”!

OOV: Propose POS Tags



Problems with this approach?
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Handling OOV
● Option #1:
● Choose subset of training data vocab to be hidden

● Hidden words replaced by <UNK>

● Run induction as usual, but some words are now ‘<UNK>’

● Option #2:
● Replace first occurrence of every word with <UNK>

● (See J&M 2nd ed 4.3.2 — 3rd ed, 3.3.1)
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https://web.stanford.edu/~jurafsky/slp3/3.pdf#subsection.3.3.1


Problems with These Approaches?
● Option #1
● May sample “closed-class” words

● Closed-class words are disproportionately more common

● ∴ Approximation will be worse the more data there is, because Zipf

● Option #2
● Con: Requires a lot more data

● Pros: Samples from all word classes

● Will only count closed-class words once

�14

https://nlp.stanford.edu/IR-book/html/htmledition/zipfs-law-modeling-the-distribution-of-terms-1.html


HW #4 Extra Credit Opportunity
● Up to 10 points:

● Design an OOV treatment for handling treebank training data that:

1. Uses <UNK> token sampling

2. Is smart about open vs. closed-class words

● You can modify reference code for HW #4.
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Other Announcements
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Other Announcements
● HW #2

● Expect grades by EOD

● HW #3

● By Wednesday, most likely.
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Today
● Dependency Parsing
● Transition-based Parsing

● Feature-based Parsing

● Motivation

● Features

● Unification
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Dependency Parse Example:  
They hid the letter on the shelf
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Argument Dependencies
Abbreviation Description

nsubj nominal subject

csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition

Modifier Dependencies

Abbreviation Description

tmod temporal modifier

appos appositional modifier

det determiner

prep prepositional modifier

They

hid

nsubj

letter

dobj

the

det

shelf

on

the

det



Transition-Based Parsing
● Parsing defined in terms of sequence of transitions

● Alternative methods for learning/decoding

● Most common model: Greedy classification-based approach

● Very efficient: O(n) 

● Best-known implementations:

● Nivre’s MALTParser

● Nivre et al (2006); Nivre & Hall (2007)

�20

http://w3.msi.vxu.se/~jni/papers/maltparser_lrec06.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=1012772


Transition-Based Parsing
● A transition-based system for dependency parsing is:

● A set of configurations C

● A set of transitions between configurations

● A transition function between configurations

● An initialization function (for C0)

● A set of terminal configurations (“end states”)
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Configurations
● A configuration for a sentence x is the triple (Σ, B, A):

● Σ is a stack with elements corresponding to the nodes (words + ROOT) in x

● B (aka the buffer) is a list of nodes in x

● A is the set of dependency arcs in the analysis so far,

● (wi, L, wj), where wx is a node in x and L is a dependency label
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Transitions
● Transitions convert one configuration to another

● Ci = t(Ci -1), where t is the transition

● Dependency graph for a sent:

● The set of arcs resulting from a sequence of transitions

● The parse of the sentence is that resulting from the initial state through the sequence of 
transitions to a legal terminal state
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Dependencies → Transitions
● To parse a sentence, we need the sequence of transitions that derives it

● How can we determine sequence of transitions, given a parse?

● This is defining our oracle function:

● How to take a parse and translate it into a series of transitions

�24



Dependencies → Transitions
● Many different oracles:

● Nivre’s arc-standard

● Nivre’s arc-eager

● Non-projectivity with Attardi’s

● …

● Generally:

● Use oracle to identify gold transitions

● Train classifier to predict best transition in new config
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http://www.aclweb.org/anthology/C12-1059
https://dl.acm.org/citation.cfm?id=1596307


Nivre’s Arc-Standard Oracle
● Words: w1,…,wn 

● w0 = ROOT 

● Initialization:

● Stack = [w0]; Buffer = [w1,…wn]; Arcs = ∅

● Termination:

● Stack = σ; Buffer= [ ]; Arcs = A
● for any σ and A
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Nivre’s Arc-Standard Oracle
● Transitions are one of three:

● Shift

● Left-Arc

● Right-Arc
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Transitions: Shift
● Shift first element of buffer to top of stack.

● [i][j,k,n][] → [i,j][k,…,n][]

�28

i j k n

Stack Buffer Arcs



Transitions: Shift
● Shift first element of buffer to top of stack.

● [i][j,k,n][] → [i,j][k,…,n][]

�29

j
i k n

Stack Buffer Arcs



Transitions: Left-Arc
● Add arc from first element of buffer j to element at top of stack i with 

dependency label l 

● Pop i from stack.

● [i] [j,k,n] A → [i] [k,…,n] A⋃[(j,l,i)]

�30

i j k n

Stack Buffer Arcs

l



Transitions: Left-Arc
● Add arc from first element of buffer j to element at top of stack i with 

dependency label l 

● Pop i from stack.

● [i] [j,k,n] A → [i] [k,…,n] A⋃[(j,l,i)]

�31

j k n

Stack Buffer Arcs

(j,l,i)



Transitions: Right-Arc
● Add arc from top of stack i to first element of buffer j with dependency label l 

● Replace j with i as front of buffer; pop j from stack.

● [i] [j,k,n] A → [i] [k,…,n] A⋃[(j,l,i)]

�32

i j k n

Stack Buffer Arcs

l



Transitions: Right-Arc
● Add arc from top of stack i to first element of buffer j with dependency label l 

● Replace j with i as front of buffer; pop j from stack.

● [i] [j,k,n] A → [i] [k,…,n] A⋃[(j,l,i)]

�33

j i k n

Stack Buffer Arcs



Transitions: Right-Arc
● Add arc from top of stack i to first element of buffer j with dependency label l 

● Replace j with i as front of buffer; pop j from stack.

● [i] [j,k,n] A → [i] [k,…,n] A⋃[(j,l,i)]

�34

i k n

Stack Buffer Arcs

(i,l,j)



Training Process
● Each step of the algorithm is a decision point between the three states

● We want to train a model to decide between the three options at each step

● (Reduce to a classification problem)

● We start with:

● A treebank

● An oracle process for guiding the transitions

● A discriminative learner to relate the transition to features of the current configuration
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Training Process, Formally:
(Σ, B, A) 

1) c ← c0(S) 
2) while c is not terminal 
3)     t ← o(c)  # Choose the (o)ptimal transition for the config c 
4)     c ← t(c)  # Move to the next configuration 
5) return Gc

�36



Testing Process, Formally:
(Σ, B, A) 

1) c ← c0(S) 
2) while c is not terminal 
3)     t ← λc(c) # Choose the transition given model parameters at c 
4)     c ← t(c)  # Move to the next configuration 
5) return Gc
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Representing Configurations with Features
● Address

● Locate a given word:

● By position in stack

● By position in buffer

● By attachment to a word in buffer

● Attributes

● Identity of word

● lemma for word

● POS tag of word

● Dependency label for word ← conditioned on previous decisions!
�38



Example: (Ballesteros et al 2015)
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Action Stack Buffer
[ROOT] [They told him a story]

Shift [ROOT, They] [told him a story]
Left-Arc (subj) [ROOT, told] [him a story]

Shift [ROOT, told, him] [a story]
Right-Arc (iobj) [ROOT, told] [a story]

Shift [ROOT, told, a] [story]
Shift [ROOT,told, a, story] []

Left-Arc (Det) [ROOT, told, story] []
Right-Arc (dobj) [ROOT, told] []
Right-Arc (root) [ROOT] []

They told him a story

subj iobj
dobj

det

https://arxiv.org/abs/1508.00657


Transition-Based Parsing 
Summary

● Shift-Reduce paradigm, bottom-up approach

● Pros:

● Single pass, O(n) complexity

● Reduce parsing to classification problem; easy to introduce new features

● Cons:

● Only makes local decisions, may not find global optimum

● Does not handle non-projective trees without hacks

● e.g. transforming nonprojective trees to projective in training data; reconverting after

�40



Other Notes
● …is this a parser?

● No, not really!

● Transforms problem into sequence labeling task, of a sort.

● e.g. (SH, LA, SH, RA, SH, SH, LA, RA)

● Sequence score is sum of transition scores

● Classifier: Any

● Originally, SVMs

● Currently: NNs + LSTMs

● State-of-the-art: UAS: 92.5%; LAS: 90.5%
�41



Dependency Parsing:  
Summary

● Dependency Grammars:

● Compactly represent pred–arg structure

● Lexicalized, localized

● Natural handling of flexible word order

● Dependency parsing:

● Conversion to phrase structure trees

● Graph-based parsing (MST), efficient non-proj O(n2)
● Transition-based parser

● MALTparser: very efficient O(n) 
● Optimizes local decisions based on many rich features
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Roadmap
● Dependency Parsing

● Transition-based Parsing

● Feature-based Parsing
● Motivation

● Features

● Unification
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Feature-Based Parsing

�44



Constraints & Compactness
● S → NP VP

● They run.

● He runs.

● But…

● * They runs

● * He run

● * He disappeared the flight

● Violate agreement (number/person), subcategorization
�45



Enforcing Constraints with CFG Rules
● Agreement

● S → NPsg+3p VPsg+3p

● S → NPpl+3p VPpl+3p

● Subcategorization:

● VP → Vtransitive NP

● VP → Vintransitive

● VP → Vditransitive NP NP

● Explosive, and loses key generalizations
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Feature Grammars
● Need compact, general constraint

● S → NP VP [iff NP and VP agree]

● How can we describe agreement & subcategory?

● Decompose into elementary features that must be consistent

● e.g. Agreement on number, person, gender, etc

● Augment CF rules with feature constraints

● Develop mechanism to enforce consistency

● Elegant, compact, rich representation
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Feature Representations
● Fundamentally Attribute-Value pairs

● Values may be symbols or feature structures

● Feature path: list of features in structure to value

● “Reentrant feature structure” — sharing a structure

● Represented as

● Attribute-Value Matrix (AVM)

● Directed Acyclic Graph (DAG)
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Attribute-Value Matrices (AVMs)
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2

66664

ATTRIBUTE1 value1
ATTRIBUTE2 value2
...
ATTRIBUTEn valuen

3

77775



AVM Examples
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(A)

(B)

(C)

(D)

"
NUMBER PL
PERSON 3

#

2

64
CAT NP
NUMBER PL
PERSON 3

3

75

2

664

CAT NP

AGREEMENT
"
NUMBER PL
PERSON 3

#
3

775

2

6666664

CAT S

HEAD

2

6664

AGREEMENT 1

"
NUMBER PL
PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

7775

3

7777775



AVM vs. DAG
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2

664

CAT NP

AGREEMENT
"
NUMBER PL
PERSON 3

#
3

775

CAT

AGREEMENT

NP

NUMBER
SG

3rd
PERSON
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2

6666664

CAT S

HEAD

2

6664

AGREEMENT 1

"
NUMBER PL
PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

7775

3

7777775

CAT

HEAD

S

SUBJECT

1

AGREEMENT

AGREEMENT

SG

3rd

NUMBER

PERSON



Using Feature Structures
● Feature Structures provide formalism to specify constraints

● …but how to apply the constraints?

● Unification
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Unification:  
⨆

● Two key roles:

● Merge compatible feature structures

● Reject incompatible feature structures

● Two structures can unify if:

● Feature structures match where both have values

● Feature structures differ only where one value is missing or underspecified

● Missing or underspecified values are filled with constraints of other

● Result of unification incorporates constraints of both
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● Less specific feature structure subsumes more specific feature structure

● FS F subsubmes  FS G iff:

● For every feature x in F, F(x) subsumes G(x) for all paths p and q in F 
 s.t. F(p)=F(q), G(p)=G(q)

● Examples:

● A =                                           B =

C =                                    

Subsumption

�55

h
NUMBER SG

i h
PERSON 3

i

"
NUMBER SG
PERSON 3

#
● A subsumes C 
● B subsumes C
● B & A don’t subsume



Unification Examples

● Identical

● Underspecified

● Different Specs

● Conflicting Specs
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h
NUMBER SG

i
⨆

h
NUMBER SG

i
=

h
NUMBER SG

i

h
NUMBER SG

i
⨆ =

h
NUMBER SG

ih i

h
NUMBER SG

i
⨆ =

h
PERSON 3

i "
NUMBER SG
PERSON 3

#

h
NUMBER SG

i
⨆ =

h
NUMBER PL

i
∅



Larger Unification Example
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⨆
2

4 SUBJECT

2

4 AGREEMENT
"
PERSON 3
NUMBER SG

#3

5

3

5

2

4
AGREEMENT 1

SUBJECT
h
AGREEMENT 1

i
3

5 =
2

6664

AGREEMENT 1

SUBJECT

2

4 AGREEMENT 1

"
PERSON 3
NUMBER SG

#3

5

3

7775



One More Unification Example
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2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆

NUMBER
SG

3rd
PERSON

AGREEMENT1

AGREEMENT

SG

3rd

NUMBER

PERSON

✔



Unification
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∅= Failure!

✘AGREEMENT

PL

3rd

NUMBER

PERSON

SUBJECT1

AGREEMENT

SG

3rd

NUMBER

PERSON

SUBJECT

2

66664

AGREEMENT 1

"
NUMBER sg

PERSON 3

#

SUBJECT
h
AGREEMENT 1

i

3

77775

2

66666664

AGREEMENT
"
NUMBER sg

PERSON 3

#

SUBJECT

2

4 AGREEMENT
"
NUMBER PL

PERSON 3

#3

5

3

77777775
⨆



● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩ 

● Pron → ‘he’

Rule Representation
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AGREEMENT

PERSON 3rd

Pron

⟨PRON AGREEMENT PERSON⟩ = 3rd



● 𝛽 → 𝛽1 … 𝛽n        
{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩ 

● NP → PRON

Rule Representation

�61

⟨NP AGREEMENT PERSON⟩ = ⟨PRON AGREEMENT PERSON⟩

AGREEMENT

PERSON

NP

AGREEMENT

PERSON 3rd

Pron



Agreement with Heads and Features
● 𝛽 → 𝛽1 … 𝛽n        

{set of constraints}       ⟨𝛽i feature path⟩ = Atomic value | ⟨𝛽j feature path⟩

�62

S → NP VP Det → this
⟨NP AGREEMENT⟩ = ⟨VP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = sg

S → Aux NP VP Det → these
⟨Aux AGREEMENT⟩ = ⟨NP AGREEMENT⟩ ⟨Det AGREEMENT NUMBER⟩ = pl

NP → Det Nominal Verb → serve
⟨Det AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩ 
⟨NP AGREEMENT⟩ = ⟨Nominal AGREEMENT⟩

⟨Verb AGREEMENT NUMBER⟩ = pl

Aux → does Noun → flight
⟨AUX AGREEMENT NUMBER⟩ = sg 
⟨NP AGREEMENT PERSON⟩ = 3rd

⟨Noun AGREEMENT NUMBER⟩ = sg



HW #5
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Goals
● Explore the role of features in implementing linguistic constraints.

● Identify some of the challenges in building compact constraints to define a precise 
grammar. 

● Apply feature-based grammars to perform grammar checking.
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Tasks
● Build a Feature-Based Grammar

● We will focus on the building of the grammar itself — you may use NLTK’s 
nltk.parse.FeatureEarleyChartParser or similar. 
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Simple Feature Grammars
● S → NP VP
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Simple Feature Grammars
● S -> NP[NUM=?n] VP[NUM=?n]

● NP[NUM=?n] -> N[NUM=?n]

● NP[NUM=?n] -> PropN[NUM=?n]

● NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]

● Det[NUM=sg] -> 'this' | 'every’

● Det[NUM=pl] -> 'these' | 'all’

● N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child’

● N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
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Parsing with Features
>>> cp = load_parser('grammars/book_grammars/
feat0.fcfg’)  
>>> for tree in cp.parse(tokens): 
...     print(tree)

(S[] (NP[NUM='sg'] 
  (PropN[NUM='sg'] Kim)) 
    (VP[NUM='sg', TENSE='pres']
      (TV[NUM='sg', TENSE='pres'] likes)
      (NP[NUM='pl'] (N[NUM='pl'] children))))
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Feature Applications
● Subcategorization

● Verb-Argument constraints

● Number, type, characteristics of args

● e.g. is the subject animate?

● Also adjectives, nouns

● Long-distance dependencies

● e.g. filler–gap relations in wh-questions
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Morphosyntactic Features
● Grammtical feature that influences morphological or syntactic behavior

● English:

● Number:

● Dog, dogs

● Person:

● am; are; is

● Case:

● I / me; he / him; etc.
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Semantic Features
● Grammatical features that influence semantic (meaning)  behavior of associated units

● E.g.:

● ?The rocks slept.

● Many proposed:

● Animacy: +/-

● Gender: masculine, feminine, neuter

● Human: +/-

● Adult: +/-

● Liquid: +/-
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Aspect (J&M 17.4.2)
● The climber [hiked] [for six hours].

● The climber [hiked] [on Saturday].

● The climber [reached the summit] [on Saturday].

● *The climber [reached the summit] [for six hours].

● Contrast:

● Achievement (in an instant) vs activity (for a time)
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