Computational Semantics

LING 571 — Deep Processing for NLP October 24th, 2018

Ryan Georgi

Miscellanea

Adventures in Linguistic Ambiguity

 Regarding a learning study from Univ participants:

"If you are not chosen to take part, you and your child's data will be destroyed."

Source: The News Quiz, BBC Radio 4, Feb 2, 2018. [link]

• Regarding a learning study from University of Reading, a letter advised potential

"If you are not chosen to take part, you and your child's data will be destroyed."

Source: The News Quiz, BBC Radio 4, Feb 2, 2018. [link]

•

NLTK Feature Syntax

Basics

• $X[FEAT_1=VALUE_1, FEAT_2=VALUE_2]$

• Variables

- X[FEAT=?f]
- Binary Values
 - X[-FEAT], Y[+FEAT]

HW #5: NLTK Feature Syntax

$NP[NUM=?n] \rightarrow Det[NUM=?n] N[NUM=?n]$

Deter this

Det[NUM=sg] -> 'this' | 'that' Det[NUM=pl] -> 'these' | 'those' N[NUM=sg] -> 'dog' | 'cat'

HW #5: NLTK Feature Syntax

$NP[NUM=?n] \rightarrow Det[NUM=?n] N[NUM=?n]$

NP_[NUMPFAIL!]

Det_[NUM=pl] N_[NUM=sg] these dog

n] Det[NUM=sg] -> 'this' | 'that' Det[NUM=pl] -> 'these' | 'those' N[NUM=sg] -> 'dog' | 'cat'

HW #5: Grammars

- It's possible to get the grammar to work with completely arbitrary rules, BUT...
- We would prefer them to be linguistically motivated!
 - instead of [IT OK=yes] or [PRON AGR=it]
 - [GENDER=neut, PERSON=3rd, NUMBER=sg]

Computational Semantics

- User: What do I have on Thursday?
- Parser:
 - Yes! It's grammatical!
 - Here's the structure!
- System:
 - Great, but what do I DO now?
- Need to associate meaning w/structure

Action: check(Cal=USER, Date=Thursday)

Cal=User

Date=Thursday

• Determine the *structure* of natural language input

Semantics:

Determine the *meaning* of natural language input

Syntax vs. Semantics

High-Level Overview

• Semantics = meaning

• ...but what does "meaning" mean?

 $\exists x \; Sky(x) \land Blue(x)$

Epistemology

- How to connect strings and those concepts.

We Will Focus On:

• Concepts that we believe to be true about the world.

Semantics: an Introduction

Uses for Semantics

- Semantic interpretation required for many tasks
 - Answering questions
 - Following instructions in a software manual
 - Following a recipe
- Requires more than phonology, morphology, syntax
- Must link linguistic elements to world knowledge

Semantics is Complex

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.
 - There was a confrontation between two groups.
 - Anti-government crowds are not Mubarak supporters

eetc.

WASHINGTON

Challenges in Semantics

• Semantic Representation:

- What is the appropriate formal language to express propositions in linguistic input? • e.g.: predicate calculus: $\exists x (dog(x) \land disappear(x))$

Entailment:

- What are all the valid conclusions that can be drawn from an utterance? Lincoln was assassinated \models Lincoln is dead

 - |= "semantically entails"

Challenges in Semantics

Reference

- How do linguistic expressions link to objects/concepts in the real world? • 'the dog,' 'the evening star,' 'The Superbowl'

Compositionality

- How can we derive the meaning of a unit from its parts?
- How do syntactic structure and semantic composition relate?
- 'rubber duck' vs. 'rubber chicken' vs. 'rubberneck'
- kick the bucket

Tasks in Computational Semantics

Extract, *interpret*, and *reason* about utterances.

- Define a meaning representation
- Develop techniques for semantic analysis
 - ...convert strings from natural language to meaning representations
- Develop methods for reasoning about these representations
 - ...and performing inference

Tasks in Computational Semantics

- Semantic similarity (words, texts)
- Semantic role labeling
- Semantic analysis
- Semantic "Parsing"
- Recognizing textual entailment
- Sentiment analysis

Complexity of Computational Semantics

- Knowledge of **language**
- Knowledge of **the world**:
 - what are the objects that we refer to?
 - How do they relate?
 - What are their properties?
- Reasoning

WASHINGTON

• words, syntax, relationships between structure & meaning, composition procedures

Given a representation and world, what new conclusions (bits of meaning) can we infer?

Complexity of Computational Semantics

• Effectively Al-complete

• Needs representation, reasoning, world model, etc.

Representing Meaning

Representing Meaning First-Order Logic: $\exists e, y (Having(e) \land Haver(e, Speaker) \land HadThing(e, y) \land Car(y))$

Semantic Network:

Conceptual **Dependency:**

Car **1** Poss-By Speaker

WASHINGTON

Frame-Based:

Having Haver: Speaker HadThing: Car

Meaning Representations

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input Representation of state of world

• Here we focus on **literal** meaning

Representational Requirements

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - Alternate expressions of same meaning map to same representation
- Inference and Variables
 - Way to draw valid conclusions from semantics and KB
- Expressiveness
 - Represent any natural language utterance

WASHINGTON

Meaning Structure of Language

- Human Languages:
 - Display basic predicate-argument structure
 - Employ variables
 - Employ quantifiers
 - Exhibit a (partially) compositional semantics

Predicate-Argument Structure

- Represent concepts and relationships
- Some words behave like predicates
 - **Book**(John, United); **Non-stop**(Flight)
- Some words behave like arguments
 - Book(John, United); Non-stop(Flight)
- Subcategorization frames indicate:
 - Number, Syntactic category, order of args

First-Order Logic

First-Order Logic

- Meaning representation:
 - Provides sound computational basis for verifiability, inference, expressiveness
- Supports determination of propositional truth
- Supports compositionality of meaning
- Supports inference
- Supports generalization through variables

First-Order Logic Terms

- **Constants**: specific objects in world;
 - A, B, John
 - Refer to exactly one object
 - Each object can have multiple constants refer to it
 - WAStateGovernor and JayInslee

■ Functions: relate objects → concepts

- LocationOf(SFO)
- Refer to objects, avoid using constants

• Variables:

• x, e

IVERSITY OF

WASHINGTON

• Refer to any potential object in the world

First-Order Logic Terms

Predicates

- Relate **objects** to other **objects**
- 'United serves Chicago'
 - Serves(United, Chicago)

Logical Connectives

- $\{\land, \lor, \Rightarrow\} = \{\text{and, or, implies}\}$
- Allow for compositionality of meaning
- 'Frontier serves Seattle and is cheap.'
- $Serves(Frontier, Seattle) \land Cheap(Frontier)$

Quantifiers

- \exists : existential quantifier: "there exists"
- Indefinite NP
 - \geq **one** such object required for truth
- A non-stop flight that serves Pittsburgh:
 - stop(x)

 $\exists x \ Flight(x) \land Serves(x, Pittsburgh) \land Non-$

Quantifiers

• \forall : universal quantifier: "for all" • All flights include beverages.

- $\forall \boldsymbol{x} \ Flight(\boldsymbol{x}) \Rightarrow Includes(\boldsymbol{x}, beverages)$

FOL Syntax Summary

Formula \rightarrow $AtomicFormula \rightarrow$ Term \rightarrow

AtomicFormula Formula Connective Formula Quantifier Variable, ... Formula \neg Formula (Formula) Predicate(Term,...) Function(Term,...) Constant Variable

Connective	\rightarrow	$\wedge \mid \vee \mid \Rightarrow$	
Quantifier	\rightarrow	$\forall \mid \exists$	
Constant	\rightarrow	$VegetarianFood \mid Maharani \mid$	
Variable	\rightarrow	$x \mid y \mid \dots$	
Predicate	\rightarrow	$Serves \mid Near \mid$	
Function	\rightarrow	Location Of Cuisine Of	

J&M p. 556 (Not in 3rd Ed Yet)

Compositionality

- and the rules for their combination.
- Formal languages **are** compositional.
- Natural language meaning is *largely compositional*, though not fully.

• The meaning of a complex expression is a function of the meaning of its parts,

Compositionality

• ...how can we derive:

• loves(John, Mary)

• from:

- John
- loves(x, y)
- Mary
- Lambda expressions!

- Lambda (λ) notation (<u>Church</u>, 1940)
 - Just like lambda in Python, Scheme, etc
 - Allows abstraction over FOL formulae
 - Supports compositionality
- Form: (λ) + variable + FOL expression
 - $\lambda x. P(x)$ "Function taking x to P(x)"
 - $\lambda \boldsymbol{x} \cdot P(\boldsymbol{x})(A) = P(A)$

Lambda Expressions

λ -Reduction

• λ -reduction: Apply λ -expression to logical term

• Binds formal parameter to term

 $\lambda x. P(x)$ $\lambda x. P(x)(A)$ P(A)

• Equivalent to function application

Nested λ -Reduction

• Lambda expression as body of another

 $\lambda x \cdot \lambda y \cdot Near(x, y)$ $\lambda x \lambda y Near(x, y)(Midway)$ $\lambda y. Near(Midway, y)$ $\lambda y. Near(Midway, y)(Chicago)$ Near(Midway, Chicago)

Nested λ -Reduction

• If it helps, think of λ s as binding sites:

 $\lambda x.\lambda y.Near(x, y)$

Nested λ -Reduction

• If it helps, think of λ s as binding sites:

 $\lambda y.Near(x, y)$ Midway

• If it helps, think of λ s as binding sites:

Nested λ -Reduction

Chicago Near(x, y)Midway

• Currying

- Why?
 - tree

...or <u>Schönkfinkelization</u>

Lambda Expressions

Converting multi-argument predicates to sequence of single argument predicates

• Incrementally accumulates multiple arguments spread over different parts of parse

- FOL terms (objects): denote elements in a domain
- Atomic formulae are:
 - If properties, sets of domain elements
 - If relations, sets of tuples of elements
- Formulae based on logical operators:

\boldsymbol{P}	${oldsymbol{Q}}$	$\neg P$
\mathbf{F}	\mathbf{F}	Τ
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}

Logical Formulae

$oldsymbol{P}\wedge oldsymbol{Q}$	$oldsymbol{P} ee oldsymbol{Q}$	$P \Rightarrow Q$
\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}
Τ	\mathbf{T}	\mathbf{T}

Logical Formulae: Finer Points

• \lor is not disjunctive:

• Your choice is pepperoni or sausage

• ... use \forall or \bigoplus

• \Rightarrow is the logical form

• Does not mean causality, just that if LHS=T, then RHS=T

Inference

Inference

1. VegetarianRestaurant(Leaf)

3. : Serves(Leaf, VegetarianFood)

2. $\forall x \; VegetarianRestaurant(x) \Rightarrow Serves(x, VegetarianFood)$

Inference

- Standard Al-type logical inference procedures
 - Modus Ponens
 - Forward-chaining, Backward Chaining
 - Abduction
 - Resolution
 - Etc...
- We'll assume we have a theorem prover.

Representing Events

- Initially, single predicate with some arguments
 - Serves(United, Houston)
 - Assume # of args = # of elements in subcategorization frame
- Example:
 - The flight arrived
 - The flight arrived in Seattle
 - The flight arrived in Seattle on Saturday.
 - The flight arrived on Saturday.
 - The flight arrived in Seattle from SFO.
 - The flight arrived in Seattle from SFO on Saturday.

Representing Events

• Arity:

- How do we deal with different numbers of arguments?
- The flight arrived in Seattle from SFO on Saturday.
 - Davidsonian:
 - $\exists e \ Arrival(e, Flight, Seattle, SFO) \land Time(e, Saturday)$
 - Neo-Davidsonian:
 - \wedge Time(e, Saturday)

• $\exists e Arrival(e) \land Arrived(e, Flight) \land Destination(e, Seattle) \land Origin(e, SFO)$

Neo-Davidsonian Events

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication
- Pros
 - No fixed argument structure
 - Dynamically add predicates as necessary
 - No unused roles
 - Logical connections can be derived

Meaning Representation for Computational Semantics

- Requirements
 - Verifiability
 - Unambiguous representation
 - Canonical Form
 - Inference
 - Variables
 - Expressiveness
- Solution:

WASHINGTON

- First-Order Logic
 - Structure
 - Semantics
 - Event Representation

Summary

- FOL can be used as a meaning representation language for natural language
- Principle of compositionality:
 - The meaning of a complex expression is a function of the meaning of its parts
- λ-expressions can be used to compute meaning representations from syntactic trees based on the principle of compositionality
- In next classes, we will look at syntax-driven approach to semantic analysis in more detail

Feature Grammar Practice: Animacy

Feature Grammar Practice

• Initial Grammar:

S -> NP VP VP[subcat=ditrans] -> V NP NP NP -> NNP NP -> Det N NNP[animacy=True] -> 'Alex' | 'Ahmed' V -> 'gifted' Det -> 'a' | 'the' N[animacy=False] -> 'book' | 'rock'

