Unsupervised Methods in Deep Processing

LING 571 — Deep Processing in NLP December 5th, 2018 Ryan Georgi

Announcements

- Course evaluations are available online until December 14th.
 - Please take the time to fill one out, it's helpful to us for improving the course.
- Remaining grades will be finished ASAP
 - (Including HW#4-EX!)



-

Degrees of Supervision

Degrees of Supervision

Problem

- Creating annotated language data is **expensive**
- Language research isn't always well-funded

Bigger Problem

• Newswire English \neq "Natural Language"

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

Degrees of Supervision

- How to get the most "bang for your buck"?
 - What can you do with just raw text?
 - How about raw text and a POS tagger?
 - How about raw text and one or two language experts?

Levels of Supervision

Supervised

- Unsupervised
- Semi-supervised

Two Example Problems

Tasks

- Grammar (PCFG) Induction
- Semantic Role Labeling (SRL)

Highlights

- Examples of how to merge Shallow Processing Intuitions w/Deep Processing
- Examples of how to maximize



Example: Learning a PCFG

Supervised

- Requires a full treebank with syntactic parses
- You've implemented the fully supervised case already!

Unsupervised

- What if we don't have parses available?
- Can we infer information about constituency from raw text?

Semi-Supervised

WASHINGTON

- Maybe we have a few parses available?
- Maybe we just have some idea what common constituents look like?

Inside-Outside Algorithm

Inside-Outside Algorithm (Baker, 1979)

- If we have an existing representation of our grammar...
 - Nonterminals
 - Terminals (POS Tags)
 - ...maybe even some guesses at rewrite rules
- ...can we estimate their probabilities from raw text?

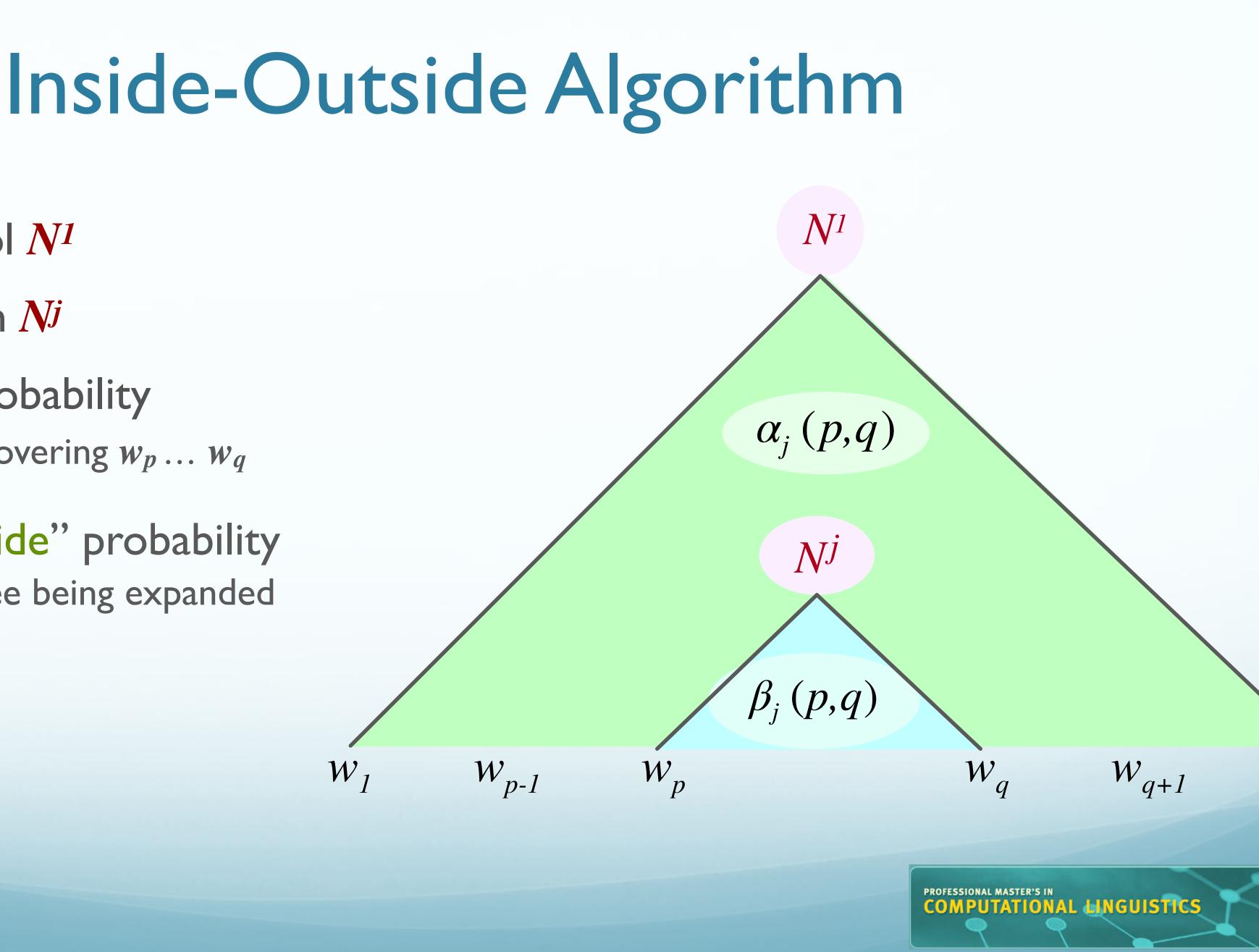
Inside-Outside Algorithm

- A type of **Expectation Maximization (EM)** Algorithm
- Expectation
 - Given input grammar rules and probabilities...
 - Calculate **expected** likelihood of observed input using current rule probabilities
 - Partial counts = sum of probabilities for any nonterminal expansion covering ("explaining") the observed span
- Maximization
 - Use partial counts as if these were true counts in a PCFG induction step
 - Recalculate probabilities based on these new counts

WASHINGTON

 W_1

- With a start symbol N¹
- And some nonterm *N*^j
- β_i is the "inside" probability
 - ...that N^{j} is a node covering $w_{p} \dots w_{q}$
- And α_i is the "outside" probability • Of the rest of the tree being expanded



Inside-Outside Algorithm

- Total probability of generating words $w_p...w_q$ from non-terminal N^j .
 - $\beta_j(p,q)=$
- This is the probability of all possible word sequence.

$$= P(w_{pq} \mid N_{pq}^{j})$$

• This is the probability of all possible expansions of any nonterm covering that

Inside-Outside Algorithm **Outside Probabilities**

words outside $w_p...w_q$

$$\alpha_{j}(p,q) = P(w_{1(p-1)} \mid N_{pq}^{j}, w_{(q+1)m})$$

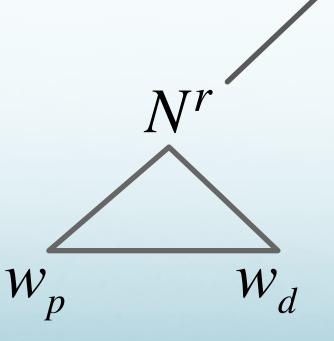
 Zero out impossible (out-of-order) spans when p > qQ

• Total probability of beginning with start symbol N^{I} and generating N^{J}_{pq} and all the

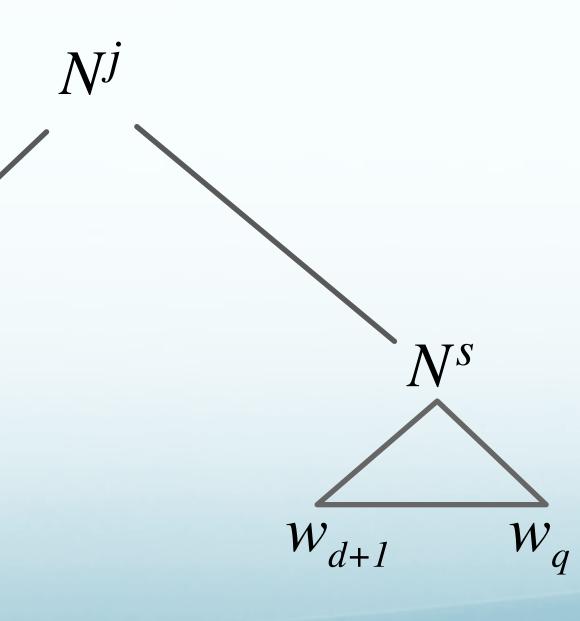
$$\boldsymbol{\ell}_{j}(\boldsymbol{p},\boldsymbol{q}) = \boldsymbol{\beta}_{j}(\boldsymbol{p},\boldsymbol{q}) = \boldsymbol{0}$$

Calculating Inside Probability

- If a pre-terminal: $\beta_i(k,k) = P(N^j \to w_k)$
- Otherwise: $\beta_j(p,q) = \sum \sum^{q-1} P(N^j \rightarrow Q) = \sum \sum^{q-1} P(N^j \rightarrow Q)$ r,s d=p



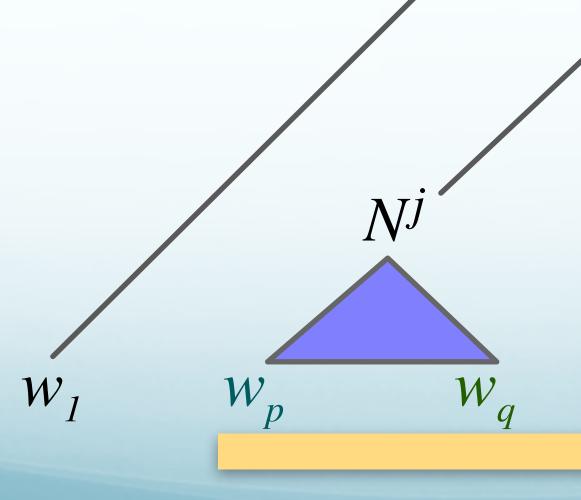
$$\rightarrow N^r N^s) \cdot \beta_r (p,d) \cdot \beta_s (d+1,q)$$

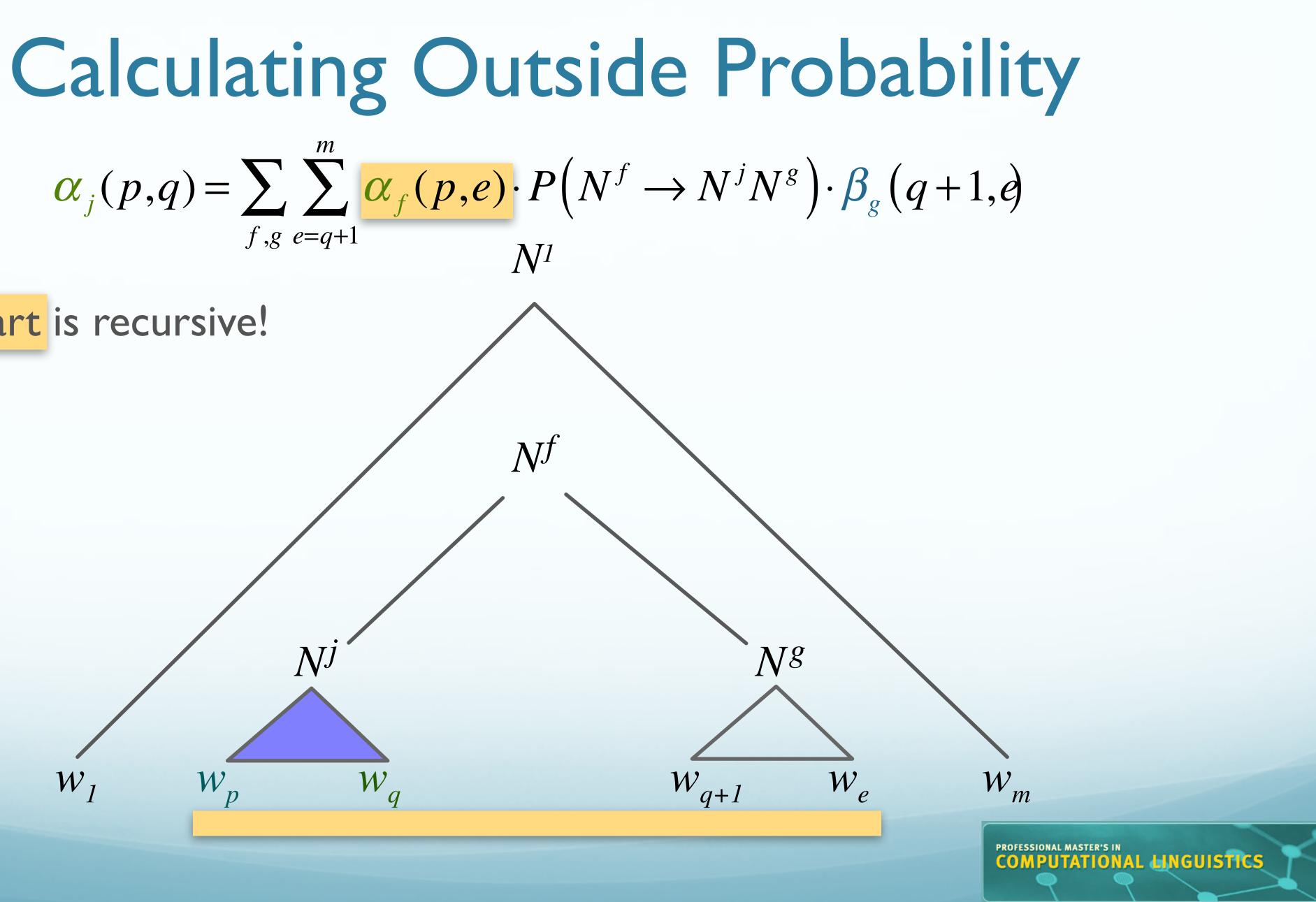


PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

f,g e=q+1

Note that this part is recursive!





Inside-Outside Algorithm **Fully Unsupervised Setting**

Setup

- Choose set of nonterminals
- Initialize all possible (CNF-Compatible) rules with random weights

Problems

- Massive parameter space
- Meaning of nonterminals is random
- Might do okay inducing constituency
 - ...but internal nodes are going to be somewhat meaningless

Inside-Outside Algorithm **Semi-supervised** Setting

Setup

- Choose set of nonterminals
- Initialize some set of learned rules, usually from small treebank

Improvements

- Bootstraps nonterminals to some linguistic knowledge
- Rules out many impossible constituents

Problems

- Still many local optima

WASHINGTON

• Algorithm prefers grammars concentrating probability on a few rules (de Marcken, 1995)

Semi-Supervised Grammar Induction Haghighi & Klein (2006)

Prototype-Driven Grammar Induction Haghighi & Klein (2006)

• What if:

- You still don't have syntactically parsed corpora
- ...but you have some good ideas of what some constituents look like?

Prototype-Driven Grammar Induction Haghighi & Klein (2006)

• Provide some "prototypical" constituent structures:

	Prototypes
	DT NN
\mathbf{NP}	JJ NNS
	NNP NNP
	VBN IN NN
\mathbf{VP}	VBD DT NN
	MD VB CD
• • •	

Prototype-Driven Grammar Induction Haghighi & Klein (2006)

- Hypothesis

Implementation

If a prototype is seen as a constituent, it must receive the prototype's entry label This will provide "pressure" to allocate probability mass to the correct nonterminals

Using Inside-Outside algorithm, if N^{j} is dominating a span of POS in prototype list... Zero out partial counts for any rule where LHS does not match that of prototype

Prototype-Driven Grammar Induction Other "Tricks"

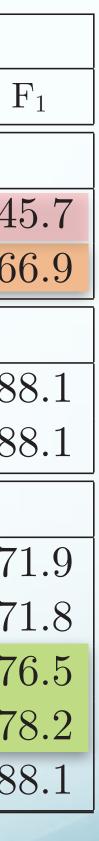
- Expand The Prototype List
 - In addition to manual prototypes,
 - Use context vectors to expand to sequences found in similar settings
- Constrain what might be a constituent
 - Use Constituent-Context Model (CCM) (Klein & Manning, 2002)
 - Use unparsed data and contextual modeling to form distributional clusters
 - Clusters represent what is frequently a constituent vs. distituent
 - Add to inside-outside by multiplying bracket scores with inside-outside scores

Prototype-Driven Grammar Induction Results

- Include both Labeled/Unlabeled Brac
- Pure Inside-Outside is terrible
- Just adding prototypes is a huge improvement
- Using prototypes with induced brack produces the best (non-oracle) result

cketing]	Labeleo	l	J	Jnlabele	d				
	Setting	Prec.	Rec.	F_1	Prec.	Rec.	ł				
	No Brackets										
	PCFG× NONE	23.9	29.1	26.3	40.7	52.1	4				
	PROTO× NONE	51.8	62.9	56.8	59.6	76.2	6				
		G	old Br	ackets							
	PCFG× GOLD	47.0	57.2	51.6	78.8	100.0	8				
kets It	PROTO× GOLD	64.8	78.7	71.1	78.8	100.0	8				
		С	CM Br	ackets							
lt	CCM	_	_	-	64.2	81.6	7				
	$PCFG \times CCM$	32.3	38.9	35.3	64.1	81.4	7				
	$PROTO \times CCM$	56.9	68.5	62.2	68.4	86.9	7				
	BEST	59.4	72.1	65.1	69.7	89.1	73				
	UBOUND	78.8	94.7	86.0	78.8	100.0	8				

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS



Prototype-Driven Grammar Induction Conclusions

- Using fairly basic speaker intuitions...
- Combined with shallow processing techniques
- previously unseen language/domain!

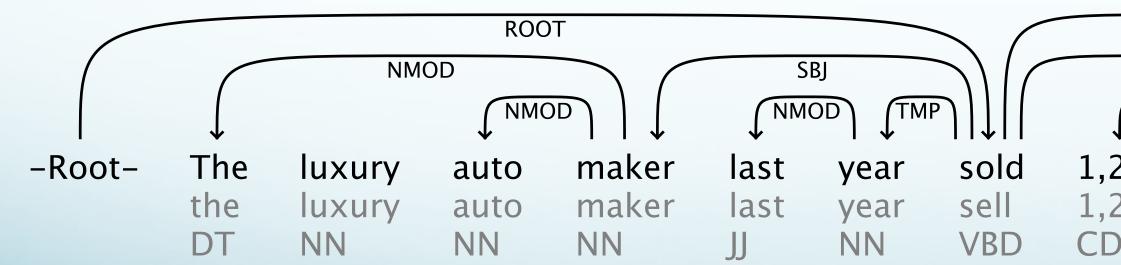
• Doesn't reach state-of-the-art, but might allow for reasonable performance on a

- Available Resources
 - Dependency parser (with syntactic functions)
 - POS tags
- Unavailable Resources
 - Role-annotated corpora

• Helpful Insight

WASHINGTON

- Syntactic functions of dependencies co semantic roles
- For instance, OBJ is almost always ARG
- Can use this as cue for **canonical** arg



		A0	A1	TMP	MNR
	SBJ	54514	19684	15	7
	OBJ	3359	51730	93	54
orrelate strongly to	ADV	162	3506	976	2308
Sheate strongly to	TMP	5	60	15167	22
	PMOD	2466	4860	142	62
	OPRD	37	5554	1	36
GI (PROTO-PATIENT)	LOC	17	145	43	157
	DIR	0	178	15	6
	MNR	5	48	13	3312
gument form	PRP	9	50	11	6
	LGS	2168	36	2	2
	PRD	413	830	31	38
	NMOD	422	388	25	59
LOC	EXT	0	20	2	12
OBJ	DEP	18	150	25	65
NMOD PMOD	SUB	3	84	4	2
214 cars in the U.S.	CONJ	198	331	22	8
214 car in the u.s.	ROOT	62	3359 51730 93 54 162 3506 976 2308 5 60 15167 22 2466 4860 142 62 37 5554 1 36 17 145 43 157 0 178 15 6 5 48 13 3312 9 50 11 6 2168 36 2 2 413 830 31 38 422 388 25 59 0 20 2 12 18 150 25 65 3 84 4 2 198 331 22 8 62 147 84 2		
O NNS IN DT NNP		64517	88616	16803	6404

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

- Problem formulation:
 - Treat induction of roles as a clustering problem
 - Clusters represent a predicate and an argument relating in a specific way
 - Predicates will have *canonical* theta frames, and alternations
 - ...how to avoid only labeling everything as canonical?

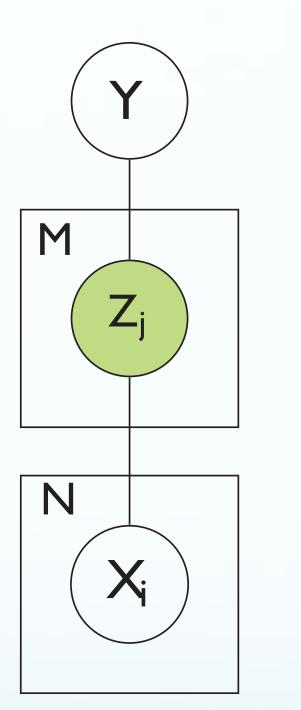
Unsupervised Semantic Role Labeling Features

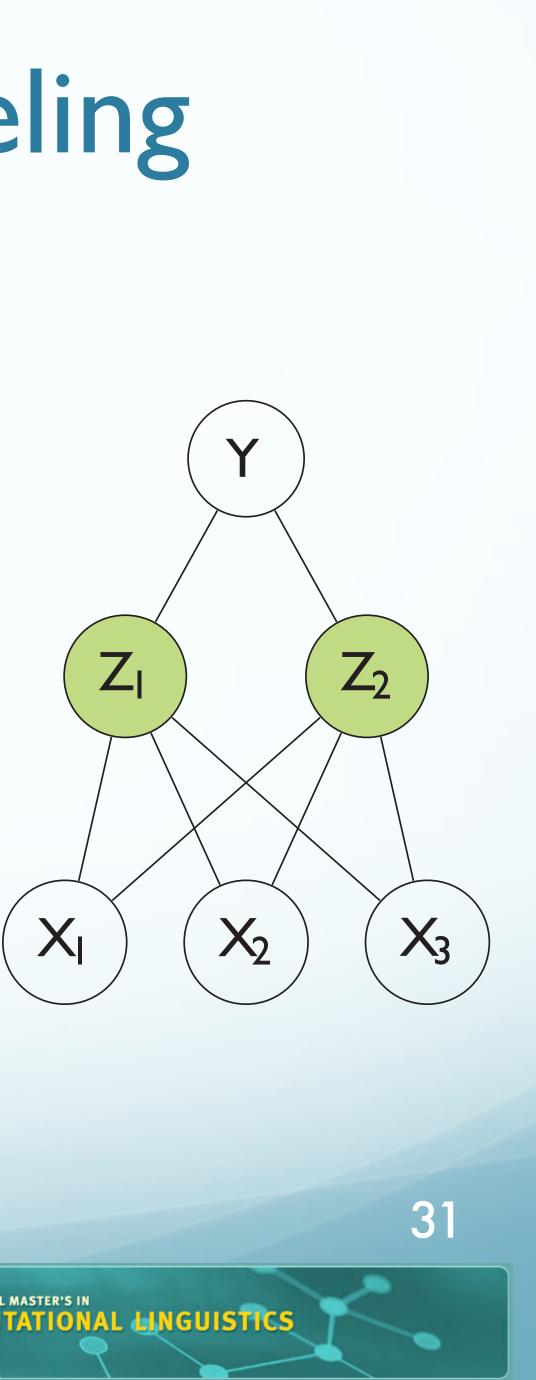
- Clusters? So, what were the features?
 - Predicate lemma
 - Argument lemma
 - Argument POS
 - Preposition between predicate and argument (if one exists)
 - Lemma of left-/rightmost child of argument
 - All syntactic functions of argument's children

PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

Unsupervised Semantic Role Labeling Avoiding Overfitting to Canoncial Form

- Proposed Solution:
 - Introduce latent variable into logistic classifier
 - Influence the classifier to learn more abstract relations than just syntactic order or functions





PROFESSIONAL MASTER'S IN COMPUTATIONAL LINGUISTICS

Results

	PU		PU CA		CP		CR		CF1	
	Mic	Mac	Mic	Mac	Mic	Mac	Mic	Mac	Mic	Mac
SyntFunc	73.2	75.8	82.0	80.9	67.6	65.3	55.7	50.1	61.1	56.7
LogLV	72.5	74.0	81.1	79.4	64.3	60.6	59.7	56.3	61.9	58.4
UpperBndS	94.7	96.1	96.9	97.0	97.4	97.6	90.4	100	93.7	93.8
UpperBndG	98.8	99.4	99.9	99.9	99.7	99.9	100	100	99.8	100

• Metrics:

• Key:

- PU = Cluster Purity
- CA = Cluster Accuracy
- $P/R/F_1$

• Mic/Mac = Micro vs. Macro average

WASHINGTON

Results

	PU		PU CA		CP		CR		CF1	
	Mic	Mac	Mic	Mac	Mic	Mac	Mic	Mac	Mic	Mac
SyntFunc	73.2	75.8	82.0	80.9	67.6	65.3	55.7	50.1	61.1	56.7
LogLV	72.5	74.0	81.1	79.4	64.3	60.6	59.7	56.3	61.9	58.4
UpperBndS	94.7	96.1	96.9	97.0	97.4	97.6	90.4	100	93.7	93.8
UpperBndG	98.8	99.4	99.9	99.9	99.7	99.9	100	100	99.8	100

- Author's system (LogLV) looks very similar to baseline (SyntFunc)
 - ... so is there really any improvement?

	PU		CA		CP		CR		CF1	
	Mic	Mac								
SyntFunct	73.9	77.8	82.1	81.3	68.0	66.5	55.9	50.3	61.4	57.3
LogLV	82.6	83.7	87.4	85.5	79.1	74.5	73.3	68.5	76.1	71.4

- What about non-canonical forms?

Results

• Canonical forms are rarer, but this system does a much better job at finding them

Unsupervised Semantic Role Labeling Conclusions

- Just because you don't have one type of annotation
 - Look for others!
 - Syntax, word order, POS tags... all can help make decisions about other tasks

Conclusions

- How useful is your system in making predictions if it basically just chooses the most common thing?
- Deep Processing looks at one set of tasks
 - But make sure to use information from shallow processing
 - ...as well as your own intuitions!

Thank You!

